Skip to main content

Pervasive Computing in Sport

Part of the Adaptation, Learning, and Optimization book series (ALO,volume 22)

Abstract

Pervasive computing has emerged with the advent of mobile technology. The aim is to be able to obtain information everywhere, at any time, for any objective. Consequently, the concept of disappearing hardware has been developed, where computers are hidden from the users perceptions. This is made possible through the use of sensors that are capable of converting physical events to equivalent electrical signals and transmitting them to a central computer. Indeed, the pervasive applications represent the main power of pervasive computing.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-03490-0_3
  • Chapter length: 27 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-03490-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3

References

  1. Hansmann, U., Merk, L., Nicklous, M.S., Stober, T.: Pervasive Computing: The Mobile World, 2nd edn. Springer Professional Computing. Springer, Berlin (2003)

    MATH  Google Scholar 

  2. Weiser, M.: The computer for the 21st century. SIGMOBILE Mob. Comput. Commun. Rev. 3(3), 3–11 (1999). https://doi.org/10.1145/329124.329126

    CrossRef  Google Scholar 

  3. Genco, A., Sorce, S.: Pervasive Systems and Ubiquitous Computing, 1st edn. WIT Press, Southampton, UK (2010)

    Google Scholar 

  4. James, D.A., Petrone, N.: Sensors and Wearable Technologies in Sport. SpringerBriefs in Applied Sciences and Technology. Springer Singapore, Singapore (2016)

    CrossRef  Google Scholar 

  5. Fraden, J.: Handbook of Modern Sensors: Physics, Designs, and Applications, 4th edn. Springer, Berlin (2010)

    CrossRef  Google Scholar 

  6. Cutmore, T.R.H., James, D.A.: Sensors and sensor systems for psychophysiological monitoring: a review of current trends. J. Psychophysiol. 21(1), 51–71 (2007). https://doi.org/10.1027/0269-8803.21.1.51

    CrossRef  Google Scholar 

  7. Ştefănescu, D.M.: Wheatstone bridge—the basic circuit for strain gauge force transducers. Handbook of Force Transducers: Principles and Components, pp. 347–360. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-18296-9_18

    CrossRef  Google Scholar 

  8. Abdul Razak, A.H., Aladin, Z., Begg, R.K., Wahab, Y.: Foot plantar pressure measurement system: a review. Sensors 12(7), 9884–9912 (2012). https://doi.org/10.3390/s120709884

    CrossRef  Google Scholar 

  9. Avci, A., Bosch, S., Marin-Perianu, M., Marin-Perianu, R., Havinga, P.: Activity recognition using inertial sensing for healthcare, wellbeing and sports applications: a survey. In: Proceedings of the 23th International Conference on Architecture of Computing Systems, ARCS 2010, pp. 167–176. VDE Verlag, Berlin (2010)

    Google Scholar 

  10. Mun, S., Jang, J.: Airbag control unit with imu integration. US Patent App. 13/090,675 (2012). https://www.google.com/patents/US20120139219

  11. Lee, J.C.: Hacking the Nintendo wii remote. IEEE Pervasive Comput. 7(3), 39–45 (2008). https://doi.org/10.1109/MPRV.2008.53

    MathSciNet  CrossRef  Google Scholar 

  12. Davey, N., Anderson, M., James, D.A.: Validation trial of an accelerometer-based sensor platform for swimming. Sports Technol. 1(4–5), 202–207 (2008). https://doi.org/10.1002/jst.59

    CrossRef  Google Scholar 

  13. Bosch, S., Shoaib, M., Geerlings, S., Buit, L., Meratnia, N., Havinga, P.: Analysis of indoor rowing motion using wearable inertial sensors. In: Proceedings of the 10th EAI International Conference on Body Area Networks, BodyNets ’15, pp. 233–239. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), ICST, Brussels, Belgium, Belgium (2015). https://doi.org/10.4108/eai.28-9-2015.2261465

  14. Khoa Nam, C.N., Kang, H.J., Suh, Y.S.: Golf swing motion tracking using inertial sensors and a stereo camera. IEEE Trans. Instrum. Meas. 63(4), 943–952 (2014)

    CrossRef  Google Scholar 

  15. Baca, A., Kornfeind, P., Heller, M.: Feedback systems in rowing. In: Moritz, E.F., Haake, S. (eds.) The Engineering of Sport 6: Volume 1: Developments for Sports, pp. 407–412. Springer New York, New York, NY (2006). https://doi.org/10.1007/978-0-387-46050-5_72

    CrossRef  Google Scholar 

  16. Kain, J.E., Yates, C.: Airborne imaging system using global positioning system (GPS) and inertial measurement unit (IMU) data. US Patent 5,894,323 (1999)

    Google Scholar 

  17. Liu, X., Zheng, Y., Phyu, M.W., Zhao, B., Yuan, X.: Power and area efficient wavelet-based on-chip ECG processor for WBAN. In: Proceedings of the 2010 International Conference on Body Sensor Networks, BSN ’10, pp. 124–130. IEEE Computer Society, Washington, DC, USA (2010). https://doi.org/10.1109/BSN.2010.37

  18. Lai, X., Liu, Q., Wei, X., Wang, W., Zhou, G., Han, G.: A survey of body sensor networks. Sensors 13(5), 5406 (2013). https://doi.org/10.3390/s130505406

    CrossRef  Google Scholar 

  19. Laukkanen, R.M.T., Virtanen, P.K.: Heart rate monitors: state of the art. J. Sports Sci. 16(sup1), 3–7 (1998). https://doi.org/10.1080/026404198366920

    CrossRef  Google Scholar 

  20. Prospero, M.: Who has the most accurate heart rate monitors? (2016). http://www.tomsguide.com/us/heart-rate-monitor,review-2885.html. Accessed 4 Sept 2016

  21. Allen, J.: Photoplethysmography and its application in clinical physiological measurement. DPhysiol. Meas. 28(3), 1–39 (2007). https://doi.org/10.1088/0967-3334/28/3/R01

    CrossRef  Google Scholar 

  22. Li, X., Yang, C., Yang, S., Li, G.: Fiber-optical sensors: basics and applications in multiphase reactors. Sensors 12(9), 12,519 (2012). https://doi.org/10.3390/s120912519

    CrossRef  Google Scholar 

  23. Morikawa, H., Nakazawa, M., Hayashi, T.: Noncontact speed measurement on running tread using spatial filter. Exp. Tech. 14(2), 31–35 (1990). https://doi.org/10.1111/j.1747-1567.1990.tb01077.x

    CrossRef  Google Scholar 

  24. Amann, M.C., Bosch, T., Lescure, M., Myllyla, R., Rioux, M.: Laser ranging: a critical review of usual techniques for distance measurement. Opt. Eng. 40(1), 10–19 (2001). https://doi.org/10.1117/1.1330700

    CrossRef  Google Scholar 

  25. Bandodkar, A.J., Wang, J.: Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol. 32(7), 363–371 (2014)

    CrossRef  Google Scholar 

  26. Nordquist, J., Hull, M.L.: Design and demonstration of a new instrumented spatial linkage for use in a dynamic environment: application to measurement of ankle rotations during snowboarding. J. Biomech. Eng. 129(2), 231–239 (2006). https://doi.org/10.1115/1.2486107

    CrossRef  Google Scholar 

  27. Kleshnev, V.: Power in rowing. In: Hong, Y. (ed.) International Research in Sports Biomechanics, pp. 224–231. Routledge, New York, NY (2011)

    Google Scholar 

  28. Yang, L., Shouqian, S.: Smart sport underwear design. In: 7th International Conference on Computer-Aided Industrial Design and Conceptual Design, pp. 1–3 (2006). https://doi.org/10.1109/CAIDCD.2006.329337

  29. Shishoo, R.: Textiles for Sportswear. Woodhead Publishing Series in Textiles. Woodhead Publishing, Amsterdam (2015)

    Google Scholar 

  30. David, D.: Physiological measuring system comprising a garment and sensing apparatus incorporated in the garment. US Patent 6,516,289 (2003). https://www.google.com/patents/US6516289

  31. Patel, S., Park, H., Leighton Chan, P.B., Rodgers, M.: A review of wearable sensors and systems with application in rehabilitation. J. NeuroEng. Rehabil. 9(21), 1–17 (2012). https://doi.org/10.1186/1743-0003-9-21

    CrossRef  Google Scholar 

  32. Mattmann, C., Amft, O., Harms, H., Troster, G., Clemens, F.: Recognizing upper body postures using textile strain sensors. In: 2007 11th IEEE International Symposium on Wearable Computers, pp. 29–36. IEEE (2007). https://doi.org/10.1109/ISWC.2007.4373773

  33. Baca, A., Kornfeind, P.: Rapid feedback systems for elite sports training. IEEE Pervasive Comput. 5(4), 70–76 (2006). https://doi.org/10.1109/MPRV.2006.82

    CrossRef  Google Scholar 

  34. Baca, A., Dabnichki, P., Heller, M., Kornfeind, P.: Ubiquitous computing in sports: a review and analysis. J. Sports Sci. 27(12), 1335–1346 (2009). https://doi.org/10.1080/02640410903277427

    CrossRef  Google Scholar 

  35. Soro, S., Heinzelman, W.: A survey of visual sensor networks. Adv. Multimed. 2009, 21 (2009). https://doi.org/10.1155/2009/640386

    CrossRef  Google Scholar 

  36. Pansiot, J.: Markerless visual tracking and motion analysis for sports monitoring. Ph.D. thesis, Department of Computing, Imperial College of Science, Technology and Medicine, University of London (2009)

    Google Scholar 

  37. Hwang, K., Dongarra, J., Fox, G.C.: Distributed and Cloud Computing: From Parallel Processing to the Internet of Things. Morgan Kaufmann, New York, NY (2011)

    Google Scholar 

  38. Robertazzi, T.: Basics of Computer Networking. SpringerBriefs in Electrical and Computer Engineering. Springer, New York, NY (2012)

    CrossRef  Google Scholar 

  39. Finkenzeller, K., Müller, D.: RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-Field Communication, 3rd edn. Wiley, New York, NY (2010)

    CrossRef  Google Scholar 

  40. Agnew, D.C., Larson, K.M.: Finding the repeat times of the GPS constellation. GPS Solut. 11(1), 71–76 (2007). https://doi.org/10.1007/s10291-006-0038-4

    CrossRef  Google Scholar 

  41. Žalik, B.: An efficient sweep-line delaunay triangulation algorithm. Comput. Aided Des. 37(10), 1027–1038 (2005). https://doi.org/10.1016/j.cad.2004.10.004

    CrossRef  Google Scholar 

  42. Misra, P., Enge, P.: Global Positioning System: Signals, Measurements, and Performance, 2nd edn. Ganga-Jamuna Press, Lincoln, MA (2010)

    Google Scholar 

  43. Fister, I., Fister, D., Fong, S., Fister Jr., I.: Widespread mobile devices in applications for real-time drafting detection in triathlons. J. Emerg. Technol. Web Intell. 5(3), 310–321 (2013). https://doi.org/10.4304/jetwi.5.3.310-321

    CrossRef  Google Scholar 

  44. Fister, D., Kramberger, J., Dugonik, J.: Mobile navigation for sport’s pilots. Int. J. Traffic Transp. Eng. 3(2), 127–138 (2013). https://doi.org/10.7708/ijtte.2013.3(2).03

    CrossRef  Google Scholar 

  45. Prasad, R., Ruggieri, M.: Applied Satellite Navigation Using GPS, GALILEO, and Augmentation. Artech House Publishers, Boston, MA (2005)

    Google Scholar 

  46. Chen, S., Wang, Y., Chen, F.: A study of differential GPS positioning accuracy. In: Proceedings of ICMMT 2002. 2002 3rd International Conference on Microwave and Millimeter Wave Technology, 2002, pp. 361–364 (2002). https://doi.org/10.1109/ICMMT.2002.1187711

  47. Soares, M.G., Malheiro, B., Restivo, F.J.: An internet DGPS service for precise outdoor navigation. In: Proceedings of ETFA ’03. IEEE Conference on Emerging Technologies and Factory Automation, 2003, vol. 1, pp. 512–518 (2003). https://doi.org/10.1109/ETFA.2003.1247750

  48. Vickery, J.L., King, R.L.: An intelligent differencing GPS algorithm and method for remote sensing. In: 2002 IEEE International Conference on Geoscience and Remote Sensing Symposium, 2002, IGARSS ’02 , vol. 2, pp. 1281–1283 (2002). https://doi.org/10.1109/IGARSS.2002.1025914

  49. Schmidt, A.: Context-aware computing. The Encyclopedia of Human-Computer Interaction, 2nd edn. The Interaction Design Foundation, Aarhus, Denmark (2013)

    Google Scholar 

  50. Bächlin, M., Tröster, G.: Pervasive computing in swimming: a model describing acceleration data of body worn sensors in crawl swimming. In: 2009 Joint Conferences on Pervasive Computing (JCPC), pp. 293–298 (2009). https://doi.org/10.1109/JCPC.2009.5420174

  51. Kranz, M., Möller, A., Hammerla, N., Diewald, S., Plötz, T., Olivier, P., Roalter, L.: The mobile fitness coach: towards individualized skill assessment using personalized mobile devices. Pervasive Mob. Comput. 9(2), 203–215 (2013). https://doi.org/10.1016/j.pmcj.2012.06.002. Special Section: Mobile Interactions with the Real World

    CrossRef  Google Scholar 

  52. Waldo, J.: Embedded computing and formula one racing. IEEE Pervasive Comput. 4(3), 18–21 (2005). https://doi.org/10.1109/MPRV.2005.56

    CrossRef  Google Scholar 

  53. Wang, L., Liu, X., Lin, S., Xu, G., Shum, H.Y.: Generic slow-motion replay detection in sports video. In: 2004 International Conference on Image Processing, 2004, ICIP ’04, vol. 3, pp. 1585–1588 (2004). https://doi.org/10.1109/ICIP.2004.1421370

  54. Beetz, M., Kirchlechner, B., Lames, M.: Computerized real-time analysis of football games. IEEE Pervasive Comput. 4(3), 33–39 (2005). https://doi.org/10.1109/MPRV.2005.53

    CrossRef  Google Scholar 

  55. Michahelles, F., Schiele, B.: Sensing and monitoring professional skiers. IEEE Pervasive Comput. 4(3), 40–46 (2005). https://doi.org/10.1109/MPRV.2005.66

    CrossRef  Google Scholar 

  56. Hasegawa, K., Saito, H.: Synthesis of a stroboscopic image from a hand-held camera sequence for a sports analysis. Comput. Vis. Media 2(3), 277–289 (2016). https://doi.org/10.1007/s41095-016-0053-5

    CrossRef  Google Scholar 

  57. Ferrari, L., Mamei, M.: Identifying and understanding urban sport areas using Nokia sports tracker. Pervasive Mob. Comput. 9(5), 616–628 (2013). https://doi.org/10.1016/j.pmcj.2012.10.006. Special issue on Pervasive Urban Applications

    CrossRef  Google Scholar 

  58. Preuschl, E., Baca, A., Novatchkov, H., Kornfeind, P., Bichler, S., Boecskoer, M.: Mobile motion advisor a feedback system for physical exercise in schools. Procedia Eng. 2(2), 2741–2747 (2010). https://doi.org/10.1016/j.proeng.2010.04.060

    CrossRef  Google Scholar 

  59. Möller, A., Roalter, L., Diewald, S., Scherr, J., Kranz, M., Hammerla, N., Olivier, P., Plötz, T.: Gymskill: a personal trainer for physical exercises. In: 2012 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 213–220 (2012). https://doi.org/10.1109/PerCom.2012.6199869

  60. Buttussi, F., Chittaro, L., Nadalutti, D.: Bringing mobile guides and fitness activities together: a solution based on an embodied virtual trainer. In: Proceedings of the 8th Conference on Human-computer Interaction with Mobile Devices and Services, MobileHCI ’06, pp. 29–36. ACM, New York, NY, USA (2006). https://doi.org/10.1145/1152215.1152222

  61. Santos, O.C.: Training the body: the potential of aied to support personalized motor skills learning. Int. J. Artif. Intell. Educ. 26(2), 730–755 (2016). https://doi.org/10.1007/s40593-016-0103-2

    CrossRef  Google Scholar 

  62. Bächlin, M., Förster, K., Tröster, G.: Swimmaster: a wearable assistant for swimmer. In: Proceedings of the 11th International Conference on Ubiquitous Computing, UbiComp ’09, pp. 215–224. ACM, New York, NY, USA (2009). https://doi.org/10.1145/1620545.1620578

  63. Bächlin, M., Tröster, G.: Swimming performance and technique evaluation with wearable acceleration sensors. Pervasive Mob. Comput. 8(1), 68–81 (2012). https://doi.org/10.1016/j.pmcj.2011.05.003

    CrossRef  Google Scholar 

  64. Kaya, A.: Decision making by coaches and athletes in sport. Procedia Soc. Behav. Sci. 152, 333–338 (2014). https://doi.org/10.1016/j.sbspro.2014.09.205

    CrossRef  Google Scholar 

  65. Novatchkov, H., Baca, A.: Computer science in sport. Encyclopedia of Information Science and Technology, 3nd edn. Information Resources Management Association, USA, Hershey, PA (2015)

    Google Scholar 

  66. Kapadia, A., Chimalapati, S.: Ball and player tracking in sports (2010). Technical Report

    Google Scholar 

  67. DOrazio, T., Leo, M.: A review of vision-based systems for soccer video analysis. Pattern Recogn. 43(8), 2911–2926 (2010). https://doi.org/10.1016/j.patcog.2010.03.009

    CrossRef  Google Scholar 

  68. Spagnolo, P., Leo, M., Mazzeo, P.L., Nitti, M., Stella, E., Distante, A.: Non-invasive soccer goal line technology: a real case study. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW ’13, pp. 1011–1018. IEEE Computer Society, Washington, DC, USA (2013). https://doi.org/10.1109/CVPRW.2013.147

  69. Chi, E.H.: Introducing wearable force sensors in martial arts. IEEE Pervasive Comput. 4(3), 47–53 (2005). https://doi.org/10.1109/MPRV.2005.67

    CrossRef  Google Scholar 

  70. Chi, E.H.: Sensors and ubiquitous computing technologies in sports. WIT Trans. State Art Sci. Eng. 32, 249–268 (2008). https://doi.org/10.2495/978-1-84564-064-4/09

    CrossRef  Google Scholar 

  71. Yan, F., Christmas, W., Kittler, J.: Ball tracking for tennis video annotation. In: Moeslund, B.T., Thomas, G., Hilton, A. (eds.) Computer Vision in Sports, pp. 25–45. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-09396-3_2

    Google Scholar 

  72. Anderson, D.: Golf ball tracking system. US Patent App. 13/672,670 (2014). https://www.google.com/patents/US20140128171

  73. Page, M., Moere, A.V.: Evaluating a wearable display jersey for augmenting team sports awareness. In: Proceedings of the 5th International Conference on Pervasive Computing, PERVASIVE’07, pp. 91–108. Springer, Berlin, Heidelberg (2007)

    Google Scholar 

  74. Page, M., Moere, A.V.: Towards classifying visualization in team sports. In: Proceedings of the International Conference on Computer Graphics, Imaging and Visualisation, CGIV ’06, pp. 24–29. IEEE Computer Society, Washington, DC, USA (2006). https://doi.org/10.1109/CGIV.2006.85

  75. Kranz, M., Spiessl, W., Schmidt, A.: Designing ubiquitous computing systems for sports equipment. In: Proceedings of the Fifth IEEE International Conference on Pervasive Computing and Communications, PERCOM ’07, pp. 79–86. IEEE Computer Society, Washington, DC, USA (2007). https://doi.org/10.1109/PERCOM.2007.12

  76. Brox, E., Luque, L.F., Evertsen, G.J., Hernandez, J.E.G.: Exergames for elderly: social exergames to persuade seniors to increase physical activity. In: 2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, pp. 546–549 (2011). https://doi.org/10.4108/icst.pervasivehealth.2011.246049

  77. Mueller, F.F., Agamanolis, S.: Sports over a distance. Comput. Entertain. 3(3), 4–4 (2005). https://doi.org/10.1145/1077246.1077261

    CrossRef  Google Scholar 

  78. Hallberg, J., Svensson, S., Östmark, A., Lindgren, P., Synnes, K., Delsing, J.: Enriched media-experience of sport events. In: Proceedings, pp. 2–9. IEEE (2004). https://doi.org/10.1109/MCSA.2004.12

  79. Sun, X., May, A.: The role of spatial contextual factors in mobile personalization at large sports events. Pers. Ubiquitous Comput. 13(4), 293–302 (2009). https://doi.org/10.1007/s00779-008-0203-6

    CrossRef  Google Scholar 

  80. Wijnalda, G., Pauws, S., Vignoli, F., Stuckenschmidt, H.: A personalized music system for motivation in sport performance. IEEE Pervasive Comput. 4(3), 26–32 (2005). https://doi.org/10.1109/MPRV.2005.47

    CrossRef  Google Scholar 

  81. Delaney, T., Madigan, T.: The Sociology of Sports: An Introduction, 2nd edn. McFarland & Co., Jefferson, NC (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iztok Fister .

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Fister, I., Fister Jr., I., Fister, D. (2019). Pervasive Computing in Sport. In: Computational Intelligence in Sports. Adaptation, Learning, and Optimization, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-03490-0_3

Download citation