Skip to main content

Visualization of Sports Activities Created by Wearable Mobile Devices

Part of the Adaptation, Learning, and Optimization book series (ALO,volume 22)

Abstract

Nowadays, the use of sport trackers increases from day to day. Athletes from different sports disciplines use them in three ways: (1) to monitor their performance data during training, (2) to analyze data after training sessions, and (3) to use the results of the analysis to improve their performance. Many different tracking technologies have been developed since the arrival of the Global Positioning System. Actually, the computer program running on the web offered by the tracker manufacturers, allows uploading the performed training sessions for later consideration, organizes the collected data, provides the basic statistical analysis, and depicts the uploaded data in the sense of a variety of graphs, tables and numbers.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-03490-0_10
  • Chapter length: 24 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-03490-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 10.1
Fig. 10.2
Fig. 10.3
Fig. 10.4
Fig. 10.5
Fig. 10.6
Fig. 10.7
Fig. 10.8
Fig. 10.9
Fig. 10.10

References

  1. Fister Jr., I., Fister, I., Fister, D., Fong, S.: Data mining in sporting activities created by sports trackers. In: 2013 International Symposium on Computational and Business Intelligence (ISCBI), pp. 88–91. IEEE (2013)

    Google Scholar 

  2. McAfee, A., Brynjolfsson, E., Davenport, T.H., Patil, D., Barton, D.: Big data: the management revolution. Harvard Bus. Rev. 90(10), 61–67 (2012)

    Google Scholar 

  3. Provost, F., Fawcett, T.: Data science and its relationship to big data and data-driven decision making. Big Data 1(1), 51–59 (2013)

    CrossRef  Google Scholar 

  4. Croon, R.D., Buyser, T.D., Klerkx, J., Duval, E.: Applying a user-centered, rapid-prototyping methodology with quantified self: a case study with triathletes. In: 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 12–15 (2014). https://doi.org/10.1109/BIBM.2014.6999283

  5. Ware, C.: Information Visualization, 3rd edn. Morgan Kaufmann, New York, NY (2012)

    Google Scholar 

  6. Siva, N., Chaparro, A., Palmer, E.: Human factors principles underlying glyph design: a review of the literature and an agenda for future research. Proc. Hum. Factors Ergon. Soc. Ann Meet. 56(1), 1659–1663 (2012). https://doi.org/10.1177/1071181312561332

    CrossRef  Google Scholar 

  7. Mayorga, A., Gleicher, M.: Splatterplots: overcoming overdraw in scatter plots. IEEE Trans. Vis. Comput Graph. 19(9), 1526–1538 (2013). https://doi.org/10.1109/TVCG.2013.65

    CrossRef  Google Scholar 

  8. Keim, D.A.: Designing pixel-oriented visualization techniques: theory and applications. IEEE Trans. Vis. Comput. Graph. 6(1), 59–78 (2000). https://doi.org/10.1109/2945.841121

    CrossRef  Google Scholar 

  9. Tu, Y., Shen, H.W.: Visualizing changes of hierarchical data using treemaps. IEEE Trans. Vis. Comput. Grap. 13(6), 1286–1293 (2007). https://doi.org/10.1109/TVCG.2007.70529

    CrossRef  Google Scholar 

  10. Borgo, R., Kehrer, J., Chung, D.H., Maguire, E., Laramee, R.S., Hauser, H., Ward, M., Chen, M.: Glyph-based visualization: foundations, design guidelines, techniques and applications. In: Eurographics State of the Art Reports, pp. 39–63 (2013)

    Google Scholar 

  11. Moorhead, R., Johnson, C.R., Munzner, T., Pfister, H., Rheingans, P., Yoo, T.S.: Visualization research challenges: a report summary. Comput. Sci. Eng. 8(4), 66–73 (2006). https://doi.org/10.1109/MCSE.2006.77

    CrossRef  Google Scholar 

  12. Munzner, T.: A nested model for visualization design and validation. IEEE Trans. Vis. Comput. Graph. 15(6), 921–928 (2009). https://doi.org/10.1109/TVCG.2009.111

    CrossRef  Google Scholar 

  13. Plaisant, C.: The challenge of information visualization evaluation. In: Proceedings of the Working Conference on Advanced Visual Interfaces, AVI ’04, pp. 109–116. ACM, New York, NY, USA (2004). https://doi.org/10.1145/989863.989880

  14. Fister, D., Fister Jr., I., Fister, I.: Visualization of cycling training. In: StuCoSReC : Proceedings of the 2016 3rd Student Computer Science Research Conference, pp. 39–44. University of Primorska, Koper, Slovenia (2016)

    Google Scholar 

  15. Peirce, C.: Collected papers of charles sanders peirce, volumes i and ii: Principles of philosophy and elements of logic. In: Hartshorne, C., Weiss, P. (eds.) Stochastic Algorithms: Foundations and Applications. Harvard University Press, Cambridge, MA (1932)

    Google Scholar 

  16. Chandler, D.: Semiotics: The Basics, 2nd edn. Routledge, New York, NY (2007)

    CrossRef  Google Scholar 

  17. De Saussure, F.: Course in General Linguistics, Classic, reprint edn. Phylosophical Library, New York, NY (2012)

    Google Scholar 

  18. Chen, M., Floridi, L.: An analysis of information visualisation. Synthese 190(16), 3421–3438 (2013). https://doi.org/10.1007/s11229-012-0183-y

    CrossRef  Google Scholar 

  19. Williams, L.G.: The effect of target specification on objects fixated during visual search. Percept. Psychophys. 1(5), 315–318 (1966). https://doi.org/10.3758/BF03207398

    CrossRef  Google Scholar 

  20. Tory, M., Moller, T.: Human factors in visualization research. IEEE Trans. Vis. Comput. Graph. 10(1), 72–84 (2004). https://doi.org/10.1109/TVCG.2004.1260759

    CrossRef  Google Scholar 

  21. Cairo, A.: The Truthful Art: Data, Charts, and Maps for Communication. New Riders, New York, NY (2016)

    Google Scholar 

  22. Legg, P.A., Chung, D.H.S., Parry, M.L., Jones, M.W., Long, R., Griffiths, I.W., Chen, M.: Matchpad: interactive glyph-based visualization for real-time sports performance analysis. Comput. Graph. Forum 31(3pt4), 1255–1264 (2012). https://doi.org/10.1111/j.1467-8659.2012.03118.x

    CrossRef  Google Scholar 

  23. Chung, D.H., Legg, P.A., Parry, M.L., Bown, R., Griffiths, I.W., Laramee, R.S., Chen, M.: Glyph sorting: interactive visualization for multi-dimensional data. Inf. Vis. (2013)

    Google Scholar 

  24. Carpendale, S.: Evaluating information visualizations. In: Kerren, A., Stasko, J.T., Fekete, J.D., North, C. (eds.) Information Visualization: Human-Centered Issues and Perspectives, pp. 19–45. Springer Berlin Heidelberg, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70956-5_2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iztok Fister .

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Fister, I., Fister Jr., I., Fister, D. (2019). Visualization of Sports Activities Created by Wearable Mobile Devices. In: Computational Intelligence in Sports. Adaptation, Learning, and Optimization, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-03490-0_10

Download citation