Advertisement

Conceptional Approach for Process Monitoring Based on an Assistance System for Grinding

  • Tobias KaufmannEmail author
  • Joachim Stanke
  • Daniel Trauth
  • Thomas Bergs
Conference paper

Abstract

The Industrial Internet of Things (IoT) has a major role both in research and in manufacturing companies. There is an international understanding that the greatest economic opportunities of the overall IoT context are found in production optimization. High tolerance requirements prevailing in grinding highlight the necessity and thus represent one of the driving factors for the development of an assistance system for grinding processes. The mass information stream (big data) from process monitoring and control, that is generated during the investigation of cause-effect relationships in the grinding process, poses special challenges to the data processing architecture. Therefore, this contribution focusses on a concept of an edge computing approach for acquisition and sustainable storage of grinding process data streams and gives a demonstrating proof of concept using both machine control data and external sensor data focussing on the cooling lubrication supply.

Keywords

Grinding Process control Edge computing system architecture 

Notes

Acknowledgement

The authors thank the German Research Foundation (DFG) for the funding of the depicted research within the SFB/TR96-A03. The authors also thank the Senseering working group of the Department for Grinding, Forming and Technology Planning of the machine tool laboratory wzl of the rwth aachen university for their hardware and software support. In particular, the authors thank H. Breuer, B. Sc. and P. Niemietz, M. Sc.

References

  1. 1.
    Azarhoushang, B., Kitzig-Frank, H.: Innovatives Konditionierungsverfahren. In: 12th Conference Moderne Schleiftechnologie und Feinstbearbeitung, KSF Furtwangen, 4b-1 (2018)Google Scholar
  2. 2.
    Thiemann, C., Zäh, M.: Automatisierte zerstörungsfreie Prüfung großflächiger FVK-Bauteile. Lightweight Des. 4, 38 (2011). Vieweg VerlagGoogle Scholar
  3. 3.
    Heinzel, C., Minke, E.: Werkstückrandzonenausbildung in der schleifenden Bearbeitung, Schleiftechnik im Wettbewerb-Stand der Technik und Zukunftschancen des Fertigungsverfahrens, University of Bremen, p. 15-1 (2000)Google Scholar
  4. 4.
    Klocke, F., Koenig, W.: Fertigungsverfahren 2 – Schleifen, Honen, Läppen, 4th ed. Springer-Verlag, p. 10 (2005)Google Scholar
  5. 5.
    Trauth, D., Stanke, J., Feuerhack, A., Bergs, T., Mattfeld, P., Klocke, F.: A characterization of the sheared edge’s quality in fine blanking using an edge-computing approach. In: 17th International Conference on Metal Forming, p. 3 (2018)Google Scholar
  6. 6.
    Mossgraber, J.: Ein Rahmenwerk für die Architektur von Frühwarnsystemen, Dissertation KIT Karlsruhe, p. 100 (2016)Google Scholar
  7. 7.
    Image Source: Apache Software Foundation. https://www.apache.org/
  8. 8.
    Barth, S., Klocke, F.: Influence of the grinding wheel topography on the thermo-mechanical stress collective in grinding. Inventions 2, 34 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tobias Kaufmann
    • 1
    Email author
  • Joachim Stanke
    • 1
  • Daniel Trauth
    • 1
  • Thomas Bergs
    • 1
  1. 1.Laboratory for Machine Tools and Production Engineering WZLRWTH Aachen UniversityAachenGermany

Personalised recommendations