Abstract
In times of a gradual digitalisation of the production, more and more data is collected from diverse sources of a production process [1]. The awareness for the potential insights generated from this data has increased massively in recent years [2, 3]. By now, even small-scale enterprises have the capacities to store the routinely incoming data. Crucial for the success of Big Data projects is the proficient reprocessing [4].
In this paper a model for the general approach to Big Data Analysis will be presented and the essential mathematical tools will be described in performance and suitability. For this, multiple data-mining models have been analysed and joined in a holistic approach. Additionally, different analysis strategies (e.g. correlation, regression, clustering and decision-trees) have been evaluated regarding their uses and limitations.
For verification, the derived model has been tested in collaboration with an industry partner on a multistage production process. Prediction models were developed and verified on a test group of data. For the preparation and analysis of the population, the data-mining workbench KNIME has been used.
It was possible to show, that multivariate linear correlations can be detected and examined using different analysis tools like matrices of the correlation coefficients, principal component analysis (PCA) or multidimensional scaling (MDS). Clusters and rule based decision tree models could be found as well. Based on the findings an optimisation of the assessed production process could be realised. Due to the derived structure and plan of procedure, the advantages of aforesaid models could be concentrated. A reduction of the processing time and an improved error prediction were made possible. Additionally a number of prior unknown factual contexts could be discovered between the collected parameters.
Keywords
- Big Data Analysis
- Data mining
- Process optimisation
This is a preview of subscription content, access via your institution.
Buying options







References
Bundesministerium für Wirtschaft und Energie: Smart Data - Innovationen aus Daten (2016)
Spath, D.: Arbeitswelten 4.0. Fraunhofer Verlag, Stuttgart (2013)
Projektgruppe Smart Data: Smart Data - Potentiale und Herausforderungen, Vernetzte Anwendungen und Plattformen für die digitale Gesellschaft (2014)
Zikopoulos, P., Eaton, C.: Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data. McGraw-Hill, New York (2012)
Spath, D., Ganschar, O., Gerlach, S., Hämmerle, M., Krause, T., Schlund, S.: Produktionsarbeit der Zukunft-Industrie 4.0, Fraunhofer Verlag, Stuttgart (2013)
Azevedo, A., Filipe Santos, M.: KDD, semma and CRISP-DM: a parallel overview, IADS-DM (2008)
Morik, K.: Der CRISP-DM Prozess für Data Mining. Technische Universität Dortmund, Dortmund (2016)
Krcmar, H.: Knowledge Discovery in Database on the Example of Engineering Change Management. Technische Universität München, München (2010)
Sharafi, A.: Knowledge Discovery in Databases - Eine Analyse des Änderungsmanagements in der Produktentwicklung. Springer Gabler, Wiesbaden (2013)
Sharafi, A., Wolf, P., Krcmar, H.: Knowledge Discovery in Databases on the Example of Engineering Change Management, Industrial Conference on Data Mining-Poster and Industry Proceedings (2010)
Strüby, R.: Data mining mit der SEMMA Methode, Enterprise Miner for Windows NT (1998)
Tombrock, P.: Knowledge Discovery in Datenbanken, Fallstudie, Hochschule für Ökonomie und Management (2016)
Berthold, M.R.: Guide to Intelligent Data Analysis. How to Intelligently Make Sense of Real Data. Texts in Computer Science, vol. 42, Springer-Verlag London Limited, London (2010)
Hinrichs, H.: Datenqualität im Data Warehouse, Dissertation, Universität Oldenburg, Oldenburg (2002)
Hildebrand, K.: Datenqualität im supply chain management. Dissertation, Fachhochschule Darmstadt (2010)
Dias, R.: Nonparametric Regression: Lowess/Loess. Advanced Geographic Data Analysis Scatter-Diagram Smoothing (2014)
Jacoby, B.: Regression: Advanced Methods, Michigan (2017)
Chatterjee, S., Price, B.: Chatterjee-Price: Praxis der Regressionsanalyse, 2nd edn., Lehr- und Handbücher der Statistik. Oldenbourg, München (1995)
Handl, A.: Multivariate Analysemethoden - Theorie und Praxis multivariater Verfahren unter besonderer Berücksichtigung von S-PLUS, Statistik und ihre Anwendungen. Springer-Verlag, Heidelberg (2010)
Cornish, R.: Statistics: Cluster Analysis, Michigan (2007)
Blobel, V., Lohrmann, E.: Statistische und numerische Methoden der Datenanalyse, 2nd edn. V. Blobel, Hamburg (2012)
Assenmacher, W.: Deskriptive Statistik, 4th edn. Springer-Lehrbuch. Springer, Berlin (2010)
Jeseke, M., Grüner, M., Weiß, F.: Big Data in Logistics. A DHL perspective on how to move beyond the hype, Troisdorf (2013)
Stackowiak, R., Manta, V., Licht, A.: Improving Logistics & Transportation Performance with Big Data. Architects Guide and Reference Architecture Introduction, Oracle Enterprise Architecture White Paper, Orace Corporation, Redwood Shores (2015)
Fleet Owner: Survey: Need for big data in logistics keeps growing, Annual study (2016)
Runkler, T.A.: Data Mining. Modelle und Algorithmen Intelligenter Datenanalyse, 2nd edn. Computational Intelligence, Springer Vieweg, Wiesbaden (2015)
Sataev, X.: Data Mining. Ausarbeitung im Rahmen der Vorlesung “Next Media”, Vortrag, Hochschule für Angewandte Wissenschaften Hamburg, Hamburg (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Hübner, M., Jahn, P., Tewaag, G. (2019). Big Data Analysis Procedure Model for Manufacturing and Logistics: Strategies and Tools for the Practical Application. In: Schmitt, R., Schuh, G. (eds) Advances in Production Research. WGP 2018. Springer, Cham. https://doi.org/10.1007/978-3-030-03451-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-03451-1_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-03450-4
Online ISBN: 978-3-030-03451-1
eBook Packages: EngineeringEngineering (R0)