Examination of Discretised Mini-channel Elements for the Transport of Air Manufactured by Selective Laser Melting

  • Holger Hermann MerschrothEmail author
  • Steffen Meiniger
  • Eberhard Abele
Conference paper


Additive manufacturing (AM) processes, in particular selective laser melting (SLM), are predestined for the implementation of innovative cutting tool functions and tool geometries [1]. Using SLM, structures such as complex internal cooling channels for minimum quantity lubrication systems (MQL) [2] and cryogenic carbon dioxide cooling [3], which were previously difficult to produce using conventional manufacturing processes, can now be produced. Mini-channels are used in a wide variety of applications in mechanical engineering. While they are used in plastic injection moulding and die casting to cool the tool mould [4], cooling channels are used in machining both for cooling and for the direct supply of lubricant to the cutting zone [5].


Roughness Simulation Design method 


  1. 1.
    Abele, E., Heep, T., Kniepkamp, M., Feßler, P.: Mit SLM-Technologie hergestellte Zerspanungswerkzeuge – Potenziale und Grenzen. Hagen (2016)Google Scholar
  2. 2.
    Duchosal, A., Werda, S., Serra, R., Leroy, R., Hamdi, H.: Numerical modeling and experimental measurement of MQL impingement over an insert in a milling tool with inner channels. Int. J. Mach. Tools Manuf. 94, 37–47 (2015)CrossRefGoogle Scholar
  3. 3.
    Abele, E., Heep, T., Bickert, C., Pyttel, B., Kirilov, K.: Additiv hergestellter Drehklemmhalter: Schwingfestigkeit additiver Werkzeugstrukturen und Freistrahlverhalten kryogener Kohlenstoffdioxidkühlung. wt Werkstattstechnik online, pp. 100–106 (2018)Google Scholar
  4. 4.
    Furumoto, T., Ueda, T., Amino, T., Hosokawa, A.: A study of internal face finishing of the cooling channel in injection mold with free abrasive grains. J. Mater. Process. Technol. 211, 1742–1748 (2011)CrossRefGoogle Scholar
  5. 5.
    Zhang, C., Zhang, S., Yan, X., Zhang, Q.: Effects of internal cooling channel structures on cutting forces and tool life in side milling of H13 steel under cryogenic minimum quantity lubrication condition. Int. J. Adv. Manuf. Technol. 83, 975–984 (2016)CrossRefGoogle Scholar
  6. 6.
    Min, S., Inasaki, I., Fujimura, S., Wada, T., Suda, S., Wakabayashi, T.: A study on tribology in minimal quantity lubrication cutting. CIRP Ann. 54, 105–108 (2005)CrossRefGoogle Scholar
  7. 7.
    Liu, C., Cai, Z., Dai, Y., Huang, N., Xu, F., Lao, C.: Experimental comparison of the flow rate and cooling performance of internal cooling channels fabricated via selective laser melting and conventional drilling process. Int. J. Adv. Manuf. Technol. 23, 1917 (2018)Google Scholar
  8. 8.
    Moody, L.F.: Friction Factors for Pipe Flow. Trans. A.S.M.E., 671–684 (1944)Google Scholar
  9. 9.
    Schacht, M., Wolff, C.: Mit MMS 40 Prozent produktiver: Produktionssteigerungen um 40% durch konsequenten Einsatz der Minimalmengenschmierung in der Fertigung als Ergebnis einer strategischen Zielsetzung. Werkstatt und Betrieb (2003)Google Scholar
  10. 10.
    Thomas, D.: The development of design rules for selective laser melting, Dissertation, University of Wales Institute, Cardiff (2009)Google Scholar
  11. 11.
    Mazur, M., Leary, M., McMillan, M., Elambasseril, J., Brandt, M.: SLM additive manufacture of H13 tool steel with conformal cooling and structural lattices. Rapid Prototyp. J. 22, 504–518 (2016)CrossRefGoogle Scholar
  12. 12.
    Snyder, J.C., Stimpson, C.K., Thole, K.A., Mongillo, D.: Build direction effects on additively manufactured channels. J. Turbomach. 138, 51006 (2016)CrossRefGoogle Scholar
  13. 13.
    Pakkanen, J., Calignano, F., Trevisan, F., Lorusso, M., Ambrosio, E.P., Manfredi, D., et al.: Study of internal channel surface roughnesses manufactured by selective laser melting in aluminum and titanium alloys. Metall Mat. Trans. A 47, 3837–3844 (2016)CrossRefGoogle Scholar
  14. 14.
    Stimpson, C.K., Snyder, J.C., Thole, K.A., Mongillo, D.: Scaling roughness effects on pressure loss and heat transfer of additively manufactured channels. J. Turbomach. 139, 21003 (2017)CrossRefGoogle Scholar
  15. 15.
    Kandlikar, S.G., Grande, W.J.: Evolution of microchannel flow passages–thermohydraulic performance and fabrication technology. Heat Transfer Eng. 24, 3–17 (2003)CrossRefGoogle Scholar
  16. 16.
    Brackbill, T.P., Kandlikar, S.G.: Effect of sawtooth roughness on pressure drop and turbulent transition in microchannels. Heat Transfer Eng. 28, 662–669 (2007)CrossRefGoogle Scholar
  17. 17.
    Kandlikar, S.G., Schmitt, D., Carrano, A.L., Taylor, J.B.: Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels. Phys. Fluids 17, 1–11 (2005)CrossRefGoogle Scholar
  18. 18.
    Adams, T., Grant, C., Watson, H.: A simple algorithm to relate measured surface roughness to equivalent sand-grain roughness. IJMEM (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Holger Hermann Merschroth
    • 1
    Email author
  • Steffen Meiniger
    • 1
  • Eberhard Abele
    • 1
  1. 1.Institute of Production Management, Technology, and Machine Tools (PTW)Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations