Machine Learning Algorithms in Machining: A Guideline for Efficient Algorithm Selection

  • Amina ZiegenbeinEmail author
  • Patrick Stanula
  • Joachim Metternich
  • Eberhard Abele
Conference paper


The manufacturing industry has difficulties with the question of how advanced analytics, can be integrated into production. This paper describes the algorithm selection step of an overall methodology for the systematic implementation of data mining projects in production. This is intended to provide users with a guideline to what a basic procedure may look like and what steps should be considered. First, this procedure is explained, which is then performed and illustrated on an application of high-frequency machine data.


Machine tool Predictive model Quality assurance 


  1. 1.
    Roth, A. (ed.) Einführung und Umsetzung von Industrie 4.0: Grundlagen, Vorgehensmodell und Use Cases aus der Praxis. Springer Gabler, Heidelberg (2016)Google Scholar
  2. 2.
    Wee, D., Kelly, R., Cattel, J., Breunig, M.: Industry 4.0-How to Navigate Digitization of the Manufacturing Sector, p. 58. McKinsey & Company (2015)Google Scholar
  3. 3.
    Lueth, L., Patsioura, C., Williams, D., et al.: The current state of data analytics usage in industrial companies. In: Industrial Analytics, Digital Analytics Association Germany, pp. 38–49 (2016)Google Scholar
  4. 4.
    Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P., Gao, R.X.: Deep learning and its applications to machine health monitoring. Mech. Syst. Signal Process. 115, 213–237 (2019)CrossRefGoogle Scholar
  5. 5.
    Elangovan, M., Sakthivel, N.R., Saravanamurugan, S., Nair, B.B., Sugumaran, V.: Machine learning approach to the prediction of surface roughness using statistical features of vibration signal acquired in turning. Procedia Comput. Sci. 50, 282–288 (2015)CrossRefGoogle Scholar
  6. 6.
    Wuest, T., Weimer, D., Irgens, C., Thoben, K.-D.: Machine learning in manufacturing: advantages, challenges, and applications. Prod. Manuf. Res. 4, 23–45 (2016)Google Scholar
  7. 7.
    Lenz, J., Wuest, T., Westkämper, E.: Holistic approach to machine tool data analytics. J. Manuf. Syst., 1–12 (2018)Google Scholar
  8. 8.
    Kasravi, K.: Data mining and knowledge discovery in manufacturing, Technical Papers-society of Manufacturing Engineers (1998)Google Scholar
  9. 9.
    Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Mag. 17, 37–54 (1996)Google Scholar
  10. 10.
    Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann, San Mateo (2016)Google Scholar
  11. 11.
    Pressman, R.S.: Software Engineering: A Practitioner’s Approach. Palgrave Macmillan, London (2005)zbMATHGoogle Scholar
  12. 12.
    Huber, S., Wiemer, H., Schneider, D., Ihlenfeldt, S.: DMME: data mining methodology for engineering applications - a holistic extension to the CRISP-DM model, pp. 1–6 (2018)Google Scholar
  13. 13.
    Shearer, C.: The CRISP-DM model: the new blueprint for data mining. J. Data Warehouse. 5, 13–22 (2000)Google Scholar
  14. 14.
    Stanula, P., Ziegenbein, A., Metternich, J.: Machine learning algorithms in production: a guideline for efficient data source selection. In: 6th CIRP Global Web Conference (2018, in press)Google Scholar
  15. 15.
    Knorr, C., Friedrich, A.: QFD ‐ Quality Function Deployment: Mit System zu marktattraktiven Produkten. Carl Hanser Verlag GmbH Co KG (2016)Google Scholar
  16. 16.
    Chan, L.-K., Wu, M.-L.: Quality function deployment: a literature review. Eur. J. Oper. Res. 143, 463–497 (2002)CrossRefGoogle Scholar
  17. 17.
    DIN Deutsches Institut für Normung e. V., Fehlzustandsart- und -auswirkungsanalyse (FMEA) 03.120.01, DIN EN 60812, 2015 (2015-08)Google Scholar
  18. 18.
    Zangemeister, C.: Nutzwertanalyse in der Systemtechnik: eine Methodik zur multidimensionalen Bewertung und Auswahl von Projektalternativen, 5th erw. Aufl. (2014)Google Scholar
  19. 19.
    Lillich, L.: Nutzwertverfahren. Physica-Verlag, Heidelberg (1992)CrossRefGoogle Scholar
  20. 20.
    Specht, D.F.: A general regression neural network. IEEE Trans. Neural Netw. 2, 568–576 (1991)CrossRefGoogle Scholar
  21. 21.
    Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intell. Syst. Appl. 13, 18–28 (1998)CrossRefGoogle Scholar
  22. 22.
    Dudani, S.A.: The distance-weighted k-nearest-neighbor rule. IEEE Trans. Syst. Man Cybern. SMC-6, 325–327 (1976)CrossRefGoogle Scholar
  23. 23.
    Svetnik, V., Liaw, A., Tong, C., Culberson, J.C., Sheridan, R.P., Feuston, B.P.: Random forest: a classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 43, 1947–1958 (2003)CrossRefGoogle Scholar
  24. 24.
    Wu, D., Jennings, C., Terpenny, J., Gao, R.X., Kumara, S.: A comparative study on machine learning algorithms for smart manufacturing: tool wear prediction using random forests. J. Manuf. Sci. Eng. 139, 1–9 (2017)Google Scholar
  25. 25.
    Wu, D., Jennings, C., Terpenny, J., Kumara, S., Gao, R.X.: Cloud-based parallel machine learning for tool wear prediction. J. Manuf. Sci. Eng. 140, 1–10 (2018)Google Scholar
  26. 26.
    Rokach, L., Maimon, O.: Data Mining with Decision Tree. Machine Perception and Artificial Intelligence. World Scientific Publishing Co. Pte. Ltd., Singapore (2014)CrossRefGoogle Scholar
  27. 27.
    Liaw, A., Wiener, M., et al.: Classification and regression by random forest. R News 2, 18–22 (2002)Google Scholar
  28. 28.
    Nisbet, R., Elder, J., Miner, G.: Handbook of statistical analysis and data mining applications. Academic Press, Amsterdam (2009)zbMATHGoogle Scholar
  29. 29.
    Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Amina Ziegenbein
    • 1
    Email author
  • Patrick Stanula
    • 1
  • Joachim Metternich
    • 1
  • Eberhard Abele
    • 1
  1. 1.Institute of Production Management, Technology and Machine ToolsDarmstadtGermany

Personalised recommendations