Advertisement

Towards a Knowledge-Based Design Methodology for Managing the Complexity in the Integrated Product and Process Development of Electric Motors

  • Andreas MayrEmail author
  • Alexander Meyer
  • Eike Schäffer
  • Michael Masuch
  • Johannes von Lindenfels
  • Gero Mössinger
  • Jörg Franke
Conference paper

Abstract

Due to the increasing areas of application, the development and production of electric motors has become one of the most relevant topics in engineering research. In order to benefit from the growing market demand, companies pursue the adaption of new procedures for enabling an efficient development and manufacturing of electric motors. However, the numerous product variations, process chain alternatives, tolerance-related interdependencies between product properties and manufacturing technologies as well as the inclusion of various engineering disciplines constitute severe difficulties. To overcome these problems, concepts to support the interdisciplinary collaboration and to enable the automatic provision and processing of solution knowledge have to be elaborated. Thus, this paper presents an approach for a knowledge-based integrated product and process development of electric motors which supports the determination of the optimal product configuration in accordance with the required manufacturing processes. To assist the individual user roles in their decision making and to anticipate information asymmetries, a so-called knowledge-based system is involved which consolidates existing product and process knowledge.

Keywords

Integrated product and process development Interdisciplinary design methodology Electric motor Knowledge-based system Knowledge management 

Notes

Acknowledgement

The authors would like to express their sincere thanks to the Bavarian State Ministry for Science, Research and Culture for funding this research in the framework of the “Green Factory Bavaria”.

References

  1. 1.
    Weigelt, M., Mayr, A., Böhm, R., Kühl, A., Franke, J.: Quo vehis, Elektromobilität? ZWF 113(1–2), 59–63 (2018)CrossRefGoogle Scholar
  2. 2.
    Kampker, A.: Elektromobilproduktion. Springer Vieweg, Berlin (2014)CrossRefGoogle Scholar
  3. 3.
    Gausemeier, J., Trächtler, A., Schäfer, W., Anacker, H.: Semantische Technologien im Entwurf mechatronischer Systeme: Effektiver Austausch von Lösungswissen in Branchenwertschöpfungsketten. Hanser, München (2014)Google Scholar
  4. 4.
    Verein Deutscher Ingenieure: VDI 5610 Blatt 2:2017-05: Wissensmanagement im Ingenieurwesen - Wissensbasierte Konstruktion (KBE). Beuth Verlag, Berlin (2017)Google Scholar
  5. 5.
    Hagedorn, J., Sell-Le Blanc, F., Fleischer, J.: Handbuch der Wickeltechnik für hocheffiziente Spulen und Motoren: Ein Beitrag zur Energieeffizienz. Springer Vieweg, Heidelberg (2016)CrossRefGoogle Scholar
  6. 6.
    Müller, G., Vogt, K., Ponick, B.: Berechnung elektrischer Maschinen, 6th edn. Wiley-VCH, Weinheim (2011)Google Scholar
  7. 7.
    Schöning, M.: Virtueller Produktentwicklungsprozess für Elektromotoren. Zugl.: Aachen, Techn. Hochsch., Diss., Shaker, Aachen (2008)Google Scholar
  8. 8.
    Kampker, A., Burggräf, P., Nee, C., Büning, M.K.: Integrated product and process development for electric engine production. In: 18th Electric Power Distribution Conference, Kermanshah, pp. 1–5 (2013)Google Scholar
  9. 9.
    Junker, S.: Prozesse und Technologien für den Elektromaschinenbau. In: Feldmann, K., Schöppner, V., Spur, G. (eds.) Handbuch Fügen, Handhaben, Montieren, 2nd edn., pp. 751–769. Hanser, München (2014)Google Scholar
  10. 10.
    Eigner, M.: Einleitung – Modellbasierte Virtuelle Produktentwicklung. In: Eigner, M., Roubanov, D., Zafirov, R. (eds.) Modellbasierte virtuelle Produktentwicklung, pp. 1–14. Springer Vieweg, Berlin (2014)Google Scholar
  11. 11.
    Ott, M., Bocker, J.: Sensitivity analysis on production tolerances for electric drive systems in automotive application. In: 18th European Conference on Power Electronics and Applications (EPE 2016 ECCE Europe), Karlsruhe, pp. 1–10 (2016)Google Scholar
  12. 12.
    Weiss, H.A., Trober, P., Golle, R., Steentjes, S., Leuning, N., Elfgen, S., Hameyer, K., Volk, W.: Impact of punching parameter variations on magnetic properties of nongrain-oriented electrical Steel. IEEE Trans. Ind. Applicat. 54(6), 5869–5878 (2018)CrossRefGoogle Scholar
  13. 13.
    Emura, M., Landgraf, F.J.G., Ross, W., Barreta, J.R.: The influence of cutting technique on the magnetic properties of electrical steels. J. Magn. Magn. Mater. 254–255, 358–360 (2003)CrossRefGoogle Scholar
  14. 14.
    Schneider, M., Urban, N., Franke, J.: Relation of joining parameters of stator core production and iron loss. In: 7th International Electric Drives Production Conference (EDPC), Würzburg, pp. 1–6 (2017)Google Scholar
  15. 15.
    Simon-Sempere, V., Burgos-Payan, M., Cerquides-Bueno, J.-R.: Influence of manufacturing tolerances on the electromotive force in permanent-magnet motors. IEEE Trans. Magn. 11, 5522–5532 (2013)CrossRefGoogle Scholar
  16. 16.
    Coenen, I., van der Giet, M., Hameyer, K.: Manufacturing tolerances: Estimation and prediction of cogging torque influenced by magnetization faults. In: Proceedings of the 14th European Conference on Power Electronics and Applications, pp. 1–9. IEEE, Piscataway, NJ (2011)Google Scholar
  17. 17.
    Meyer, A., Mayr, A., Malygin, N., Zhang, Y., Franke, J.: Selective magnet assembly assisted by an automated warehouse system: algorithms, performance and industry 4.0 readyness. In: 7th International Electric Drives Production Conference (EDPC), Würzburg, pp. 1–6 (2017)Google Scholar
  18. 18.
    Gausemeier, J., Lanza, G., Lindemann, U. (eds.): Produkte und Produktionssysteme integrativ konzipieren: Modellbildung und Analyse in der frühen Phase der Produktentstehung, 1st edn. Carl Hanser Fachbuchverlag (2012)Google Scholar
  19. 19.
    Hellenbrand, D.: Transdisziplinäre Planung und Synchronisation mechatronischer Produktentwicklungsprozesse. Zugl.: München, Techn. Univ., Diss., Dr. Hut, München (2013)Google Scholar
  20. 20.
    Verein Deutscher Ingenieure: VDI 2206:2004-06: Entwicklungsmethodik für mechatronische Systeme. Beuth Verlag, Berlin (2004)Google Scholar
  21. 21.
    Kampker, A., Burggräf, P., Deutskens, C., Maue, A., Förstmann, R.: Integrated product and process development: Modular production architectures based on process requirements. Procedia CIRP 20, 109–114 (2014)CrossRefGoogle Scholar
  22. 22.
    Müller, S.: Methodik für die entwicklungs- und planungsbegleitende Generierung und Bewertung von Produktionsalternativen. Zugl.: München, Techn. Univ., Diss. Utz, München (2008)Google Scholar
  23. 23.
    Cooper, R.G.: Third-generation new product processes. J. Prod. Innov. Manag. 11, 3–14 (1994)CrossRefGoogle Scholar
  24. 24.
    Bender, B., Gericke, K.: Entwicklungsprozesse. In: Lindemann, U. (ed.) Handbuch Produktentwicklung, pp. 401–424. Hanser, München (2016)Google Scholar
  25. 25.
    Gericke, K., Blessing, L.: An analysis of design process models across disciplines. In: DS 70: Proceedings of DESIGN 2012, the 12th International Design Conference, Dubrovnik, Croatia, pp. 171–180 (2012)Google Scholar
  26. 26.
    Eversheim, W., Schuh, G. (eds.): Integrierte Produkt - und Prozessgestaltung. Springer, Berlin (2005)Google Scholar
  27. 27.
    Ehrlenspiel, K., Meerkamm, H.: Integrierte Produktentwicklung: Denkabläufe, Methodeneinsatz, Zusammenarbeit, 6th edn. Hanser, München, Wien (2017)CrossRefGoogle Scholar
  28. 28.
    Lindemann, U.: Methodische Entwicklung technischer Produkte: Methoden flexibel und situationsgerecht anwenden. Springer, Heidelberg (2005)Google Scholar
  29. 29.
    International Council On Systems Engineering (INCOSE) (ed.): Systems engineering handbook. A guide for system life cycle processes and activities, 4th edn. Wiley, Hoboken, NJ (2015)Google Scholar
  30. 30.
    Tschirner, C., Bretz, L., Dumitrescu, R., Gausemeier, J.: Applying model-based systems engineering for product engineering management concepts for industrial application. In: IEEE International Symposium on Systems Engineering (ISSE), Rome, Italy, pp. 42–49 (2015)Google Scholar
  31. 31.
    Eigner, M., Koch, W., Muggeo, C. (eds.): Modellbasierter Entwicklungsprozess cybertronischer Systeme: Der PLM-unterstützte Referenzentwicklungsprozess für Produkte und Produktionssysteme. Springer Vieweg, Berlin (2017)Google Scholar
  32. 32.
    Albers, A., Reiss, N., Bursac, N., Richter, T.: iPeM – integrated product engineering model in context of product generation engineering. Procedia CIRP 50, 100–105 (2016)CrossRefGoogle Scholar
  33. 33.
    Gausemeier, J., Low, C.Y., Steffen, D., Deyter, S.: Specifying the principle solution in mechatronic development enterprises. In: 2nd Annual IEEE Systems Conference, Montreal, Canada, pp. 1–7 (2008)Google Scholar
  34. 34.
    Kampker, A., Deutskens, C., Kreiskother, K., Buning, M.K., Kuhn, M.: Return on engineering: Design to cost for electric engine production. In: 5th International Electric Drives Production Conference (EDPC), Nuremberg, Germany, pp. 1–6 (2015)Google Scholar
  35. 35.
    Kampker, A., Burggräf, P., Swist, M., Nowacki, C.: Assessment and configuration of a product production system. In: Zaeh, M.F. (ed.) Enabling Manufacturing Competitiveness and Economic Sustainability, pp. 147–152. Springer International Publishing, Cham (2014)CrossRefGoogle Scholar
  36. 36.
    Rivera, C.A., Poza, J., Ugalde, G., Almandoz, G.: A knowledge based system architecture to manage and automate the electrical machine design process. In: IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM), Donostia, San Sebastian, Spain, pp. 1–6 (2017)Google Scholar
  37. 37.
    Karnavas, Y.L., Chasiotis, I.D.: A simple knowledge base software architecture for industrial electrical machine design: application to electric vehicle’s in-wheel motor. In: Wilimowska, Z., Borzemski, L., Grzech, A., Świątek, J. (eds.) Advances in Intelligent Systems and Computing, Information Systems Architecture and Technology: Proceedings of 36th International Conference on Information Systems Architecture and Technology – ISAT 2015 – Part IV, pp. 111–122. Springer, Cham (2016)Google Scholar
  38. 38.
    Tüchsen, J., Pop, A.C., Koch, M., Schleich, B., Wartzack, S.: Data driven design selection and generation - an industrial case study on electric motors. In: DS 92: Proceedings of the DESIGN 2018 15th International Design Conference, Dubrovnik, Croatia, pp. 1709–1720 (2018)Google Scholar
  39. 39.
    Tüchsen, J., et al.: Knowledge-based and calculation-supported concept validation in the early stages of product development using the example of the electric motor. In: NAFEMS 18 DACH Conference, Bamberg, pp. 244–249 (2018)Google Scholar
  40. 40.
    Favi, C., Germani, M., Marconi, M., Mengoni, M.: Innovative software platform for eco-design of efficient electric motors. J. Clean. Prod. 37, 125–134 (2012)CrossRefGoogle Scholar
  41. 41.
    Favi, C., Germani, M., Marconi, M., Mengoni, M.: An integrated approach and IT platform to optimise electric motor engineering and design. IJITM 13(2/3), 134 (2014)CrossRefGoogle Scholar
  42. 42.
    Bauer, F., Gausemeier, J.: Planungswerkzeug zur wissensbasierten Produktionssystemkonzipierung. Zugl.: Paderborn, Univ., Diss. Heinz Nixdorf Institut, Universität Paderborn, Paderborn (2015)Google Scholar
  43. 43.
    Mayr, A., et al.: Concept for an integrated product and process development of electric drives using a knowledge-based system. In: 7th International Electric Drives Production Conference (EDPC), Würzburg, pp. 1–7 (2017)Google Scholar
  44. 44.
    Mayr, A., Meyer, A., Masuch, M., Braun, A., Franke, J.: Towards a software system providing knowledge about energy and resource efficiency potentials within the product and process development of electric drives. AMM 882, 53–63 (2018)CrossRefGoogle Scholar
  45. 45.
    Schäffer, E., et al.: Configurators as the basis for the transfer of knowledge and standardized communication in the context of robotics. Procedia CIRP 72, 310–315 (2018)CrossRefGoogle Scholar
  46. 46.
    Schäffer, E., Leibinger, H., Stamm, A., Brossog, M., Franke, J.: Configuration based process and knowledge management by structuring the software landscape of global operating industrial enterprises with Microservices. Procedia Manufact. 24, 86–93 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andreas Mayr
    • 1
    Email author
  • Alexander Meyer
    • 1
  • Eike Schäffer
    • 1
  • Michael Masuch
    • 1
  • Johannes von Lindenfels
    • 1
  • Gero Mössinger
    • 1
  • Jörg Franke
    • 1
  1. 1.Institute for Factory Automation and Production Systems (FAPS)Friedrich-Alexander University Erlangen-Nuremberg (FAU)NurembergGermany

Personalised recommendations