Skip to main content

Towards Software Performance by Construction

  • Conference paper
  • First Online:
Leveraging Applications of Formal Methods, Verification and Validation. Modeling (ISoLA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11244))

Included in the following conference series:

Abstract

Performance is an important extra-functional factor that directly impacts on the quality of a software system as perceived by its users. It indicates how well the software behaves, thus complementing functional properties that concern what the software does. Its ever-increasing relevance cannot be underestimated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. 4 awesome slides showing how page speed correlates to business metrics at walmart.com. http://www.webperformancetoday.com/2012/02/28/4-awesome-slides-showing-how-page-speed-correlates-to-business-metrics-at-walmart-com/. Accessed 12 Jan 2018

  2. NASA delays satellite launch after finding bugs in software program. https://fcw.com/Articles/1998/04/19/NASA-delays-satellite-launch-after-finding-bugs-in-software-program.aspx. Accessed 4 Feb 2018

  3. Using page speed in mobile search ranking. https://webmasters.googleblog.com/2018/01/using-page-speed-in-mobile-search.html. Accessed 18 Jan 2018

  4. Marsan, M.A., Conte, G., Balbo, G.: A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor systems. ACM Trans. Comput. Syst. 2(2), 93–122 (1984)

    Article  Google Scholar 

  5. Aleti, A., Trubiani, C., van Hoorn, A., Jamshidi, P.: An efficient method for uncertainty propagation in robust software performance estimation. J. Syst. Softw. 138, 222–235 (2018)

    Article  Google Scholar 

  6. Awad, M., Menasce, D.A.: Deriving parameters for open and closed QN models of operational systems through black box optimization. In: Proceedings of the International Conference on Performance Engineering (ICPE) (2017)

    Google Scholar 

  7. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based performance prediction in software development: a survey. IEEE Trans. Softw. Eng. 30(5), 295–310 (2004)

    Article  Google Scholar 

  8. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.: Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications. Wiley, Hoboken (2005)

    MATH  Google Scholar 

  9. Bortolussi, L., Gast, N.: Mean field approximation of uncertain stochastic models. In: 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN) (2016)

    Google Scholar 

  10. Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain continuous-time Markov chains. Inf. Comput. 247, 235–253 (2016)

    Article  MathSciNet  Google Scholar 

  11. Clark, A., Gilmore, S., Hillston, J., Tribastone, M.: Stochastic process algebras. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 132–179. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72522-0_4

    Chapter  Google Scholar 

  12. Franks, G., Al-Omari, T., Woodside, M., Das, O., Derisavi, S.: Enhanced modeling and solution of layered queueing networks. IEEE Trans. Softw. Eng. 35(2), 148–161 (2009)

    Article  Google Scholar 

  13. Garcia, J., Krka, I., Mattmann, C., Medvidovic, N.: Obtaining ground-truth software architectures. In: Proceedings of the 35th International Conference on Software Engineering (ICSE), pp. 901–910 (2013)

    Google Scholar 

  14. Incerto, E., Napolitano, A., Tribastone, M.: Moving horizon estimation of service demands in queuing networks. In: 26th IEEE International Symposium on the Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS) (2018, to appear)

    Google Scholar 

  15. Incerto, E., Tribastone, M., Trubiani, C.: Symbolic performance adaptation. In: Proceedings of the 11th International Symposium on Software Engineering for Adaptive and Self-managing Systems (SEAMS) (2016)

    Google Scholar 

  16. Kalbasi, A., Krishnamurthy, D., Rolia, J., Richter, M.: MODE: mix driven on-line resource demand estimation. In: 7th International Conference on Network and Service Management (2011)

    Google Scholar 

  17. Kowal, M., Schaefer, I., Tribastone, M.: Family-based performance analysis of variant-rich software systems. In: Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 94–108. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54804-8_7

    Chapter  Google Scholar 

  18. Kowal, M., Tschaikowski, M., Tribastone, M., Schaefer, I.: Scaling size and parameter spaces in variability-aware software performance models. In: 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 407–417 (2015)

    Google Scholar 

  19. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47

    Chapter  Google Scholar 

  20. Sendall, S., Kozaczynski, W.: Model transformation: the heart and soul of model-driven software development. IEEE Softw. 20(5), 42–45 (2003)

    Article  Google Scholar 

  21. Spinner, S., Casale, G., Brosig, F., Kounev, S.: Evaluating approaches to resource demand estimation. Perform. Eval. 92, 51–71 (2015)

    Article  Google Scholar 

  22. Stewart, W.J.: Probability, Markov Chains, Queues, and Simulation. Princeton University Press, Princeton (2009)

    Book  Google Scholar 

  23. Thereska, E., Doebel, B., Zheng, A.X., Nobel, P.: Practical performance models for complex, popular applications. In: ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, pp. 1–12 (2010)

    Google Scholar 

  24. Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: A classification and survey of analysis strategies for software product lines. ACM Comput. Surv. 47(1), 6:1–6:45 (2014)

    Article  Google Scholar 

  25. Tribastone, M.: A fluid model for layered queueing networks. IEEE Trans. Softw. Eng. 39(6), 744–756 (2013)

    Article  Google Scholar 

  26. Tribastone, M., Gilmore, S.: Automatic extraction of PEPA performance models from UML activity diagrams annotated with the MARTE profile. In: Proceedings of the Seventh International Workshop on Software and Performance (WOSP) (2008)

    Google Scholar 

  27. Tribastone, M., Gilmore, S.: Automatic translation of UML sequence diagrams into PEPA models. In: Fifth International Conference on the Quantitative Evaluaiton of Systems (QEST), pp. 205–214 (2008)

    Google Scholar 

  28. Tschaikowski, M., Tribastone, M.: Approximate reduction of heterogeneous nonlinear models with differential hulls. IEEE Trans. Autom. Control 61(4), 1099–1104 (2016)

    Article  Google Scholar 

  29. Woodside, M., Franks, G., Petriu, D.C.: The future of software performance engineering. In: Proceedings of the Future of Software Engineering (FOSE), pp. 171–187 (2007)

    Google Scholar 

Download references

Acknowledgement

This work is partially supported by a DFG Mercator Fellowship, project DAPS2 under the Special Priority Programme (SPP) 1593 “Design for Future — Managed Software Evolution”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirco Tribastone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tribastone, M. (2018). Towards Software Performance by Construction. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Modeling. ISoLA 2018. Lecture Notes in Computer Science(), vol 11244. Springer, Cham. https://doi.org/10.1007/978-3-030-03418-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03418-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03417-7

  • Online ISBN: 978-3-030-03418-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics