Skip to main content

Prediction Model for Prevalence of Type-2 Diabetes Complications with ANN Approach Combining with K-Fold Cross Validation and K-Means Clustering

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 886)


In today’s era, most of the people are suffering with chronic diseases because of their lifestyle, food habits and reduction in physical activities. Diabetes is one of the most common chronic diseases which has affected to the people of all ages. Diabetes complication arises in human body due to increase of blood glucose (sugar) level than the normal level. Type-2 diabetes is considered as one of the most prevalent endocrine disorders. In this circumstance, we have tried to apply Machine learning algorithm to create the statistical prediction based model that people having diabetes can be aware of their prevalence. The aim of this paper is to detect the prevalence of diabetes relevant complications among patients with Type-2 diabetes mellitus. The processing and statistical analysis we used are Scikit-Learn, and Pandas for Python. We also have used unsupervised Machine Learning approaches known as Artificial Neural Network (ANN) and K-means Clustering for developing classification system based prediction model to judge Type-2 diabetes mellitus chronic diseases.


  • Healthcare
  • Machine learning
  • Artificial Neural Network (ANN)
  • Diabetes type-2
  • Prediction
  • K-means clustering
  • Classification model

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-03402-3_31
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-03402-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.


  1. 1.

  2. 2.

  3. 3.

  4. 4.


  1. Arena, J.G.: Behavioral medicine consulation. In: Handbook of Clinical Interviewing with Adults, p. 446 (2007)

    Google Scholar 

  2. Mahmoodi,M., Hosseini-Zijoud, S.M., Hassan Shahi, G.H., Nabati, S., Modarresi, M., Mehrabian, M., Sayyadi, A.R., Hajizadeh, M.R.: J. Diabetes Endocrinol. 4(1), 1–5, January 2013. ISSN 2141-2685- Academic Journal

    Google Scholar 

  3. What is Diabetes? (n.d.). Accessed 28 Aug 2017

  4. The State of Diabetes in Bangladesh, 05 October 2016. Accessed 28 Aug 2017

  5. Vaz, N.C., Ferreira, A.M., Kulkarni, M.S., Vaz, F.S., Pintondian, N.R.: Prevalence of diabetic complications in rural Goa, India. J. Community Med. 36(4), 283–286 (2011).

    CrossRef  Google Scholar 

  6. Cao, H.B., Liu, P.A., Jiang, X.G., Jiang, Y.Y., Wang, J.P., Zheng, H., Zhang, H., Bennett, P.H., Howard, B.V.: Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance: the Da Qing IGT and diabetes study. Diabetes Care 20, 537–544 (1997)

    CrossRef  Google Scholar 

  7. Nicole, R.: Title of paper with only first word capitalized. J. Name Stand. Abbrev. (in press)

    Google Scholar 

  8. Yorozu, Y., Hirano, M., Oka, K., Tagawa, Y.: Electron spectroscopy studies on magneto-optical media and plastic substrate interface. IEEE Transl. J. Magn. Japan 2, 740–741 (1987). [Digests 9th Annual Conf. Magnetics Japan, p. 301, 1982]

    CrossRef  Google Scholar 

  9. Rajesh, K., Sangeetha, V.: Application of data mining methods and techniques for diabetes diagnosis. Int. J. Eng. Innov. Technol. 2(3), 224–229 (2012)

    Google Scholar 

  10. Wang, C., Li, L., Wang, L., Ping, Z., Flory, M.T., Wang, G., Li, W.: Evaluating the risk of type 2 diabetes mellitus using artificial neural network: an effective classification approach. Diabetes Res. Clin. Pract. 100(1), 111–118 (2013)

    CrossRef  Google Scholar 

  11. Smith, A.E., Nugent, C.D., McClean, S.I.: Evaluation of inherent performance of intelligent medical decision support systems: utilising neural networks as an example. Artif. Intell. Med. 27(1), 1–27 (2003)

    CrossRef  Google Scholar 

  12. Lin, C.S., Chiu, J.S., Hsieh, M.H., Mok, M.S., Li, Y.C., Chiu, H.W.: Predicting hypotensive episodes during spinal anesthesia with the application of artificial neural networks. Comput. Methods Programs Biomed. 92(2), 193–197 (2008)

    CrossRef  Google Scholar 

  13. Wolk, R., Berger, P., Lennon, R.J., Brilakis, E.S., Somers, V.K.: Body mass index. Circulation 108(18), 2206–2211 (2003)

    CrossRef  Google Scholar 

  14. Tsoumakas, G., Katakis, I.: Multi-label classification: an overview. Int. J. Data Warehous. Min. 3(3), 1–13 (2006)

    CrossRef  Google Scholar 

  15. Garreta, R., Moncecchi, G.: Learning Scikit-Learn: Machine Learning in Python. Packt Publishing Ltd., Birmingham (2013)

    Google Scholar 

  16. Hackeling, G.: Mastering Machine Learning with Scikit-Learn. Packt Publishing Ltd., Birmingham (2014)

    Google Scholar 

  17. Guo, C., Berkhahn, F.: Entity Embeddings of Categorical Variables. arXiv preprint arXiv:1604.06737 (2016)

  18. Principe, J.C., Fancourt, C.L.: Artificial neural networks. In: Handbook of Global Optimization, vol. 2, pp. 363–386 (2013)

    Google Scholar 

  19. Likas, A., Vlassis, N., Verbeek, J.J.: The global k-means clustering algorithm. Pattern Recognit. 36(2), 451–461 (2003)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Md. Tahsir Ahmed Munna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Munna, M.T.A., Alam, M.M., Allayear, S.M., Sarker, K., Ara, S.J.F. (2019). Prediction Model for Prevalence of Type-2 Diabetes Complications with ANN Approach Combining with K-Fold Cross Validation and K-Means Clustering. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Advances in Information and Communication Networks. FICC 2018. Advances in Intelligent Systems and Computing, vol 886. Springer, Cham.

Download citation