Skip to main content

Carrot Domestication

  • Chapter
  • First Online:
The Carrot Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

The domestication syndrome of carrot (Daucus carota subsp. sativus) includes increased carotenoid, anthocyanin, and sugar content, loss of lateral root branching, biennial growth habit, and increased size and variation of root shape. Recent advances in high-throughput sequencing and computational techniques have facilitated new ways to study the genetic and genomic changes that accompany plant domestication. While most genetic studies now support a central Asian center of domestication for carrot much remains unknown regarding the genetic mechanisms that contribute to phenotypic changes associated with domestication. Most research to study the genetics of plant domestication uses a top-down approach, which begins with a phenotype of interest and then identifies causative genomic regions via genetic analyses such as quantitative trait locus (QTL) and linkage disequilibrium (LD) mapping. An alternative approach is to start by identifying genes or genomic regions with signatures of selection and then make use of genetic tools to identify the phenotypes to which these genes contribute, also referred to as a bottom-up approach. In this chapter, we present a thorough review of genetic and genomic studies that have used both top-down and bottom-up approaches to study the domestication syndrome of carrot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alabran DM, Mabrouk AF (1973) Carrot flavor, sugars, and free nitrogenous compounds in fresh carrots. J Agric Food Chem 21:205–208

    CAS  Google Scholar 

  • Alessandro MS, Galmarini CR (2007) Inheritance of vernalization requirement in carrot. J Am Soc Hort Sci 132:525–529

    Google Scholar 

  • Alessandro MS, Galmarini CR, Iorizzo M et al (2013) Molecular mapping of vernalization requirement and fertility restoration genes in carrot. Theor Appl Genet 126:415–423

    Google Scholar 

  • Andrews AC (1949) The carrot as a food in the classical era. Class Philol 44:182–196

    Article  Google Scholar 

  • Arango J, Jourdan M, Geoffriau E et al (2014) Carotene hydroxylase activity determines the levels of both α-carotene and total carotenoids in orange carrots. Plant Cell 26:2223–2233

    Article  CAS  Google Scholar 

  • Arbizu CI, Ellison SL, Senalik D et al (2016) Genotyping-by-sequencing provides the discriminating power to investigate the subspecies of Daucus carota (Apiaceae). BMC Evol Biol 16:234

    Article  Google Scholar 

  • Banga O (1957a) Origin of the European cultivated carrot. Euphytica 6:54–63

    Google Scholar 

  • Banga O (1957b) The development of the original European carrot material. Euphytica 7:64–76

    Google Scholar 

  • Banga O (1963a) Main types of the western carotene carrot and their origin. WEJ Tjeenk, Willink, Zwolle, The Netherlands

    Google Scholar 

  • Banga O (1963b) Origin and distribution of the western cultivated carrot. Genet Agrar 17:357–370

    Google Scholar 

  • Barański R, Maksylewicz-Kaul A, Nothnagel T et al (2012) Genetic diversity of carrot (Daucus carota L.) cultivars revealed by analysis of SSR loci. Genet Res Crop Evol 59:163–170

    Article  Google Scholar 

  • Barański R, Goldman I, Nothnagel T et al (2016) Improving color sources by plant breeding and cultivation. In: Carle, Schweiggert R (ed) Handbook on natural pigments in food and beverages: industrial applications for improving food color. Springer, New York, pp 429–472

    Chapter  Google Scholar 

  • Baudry A, Heim MA, Dubreucq B et al (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J 39:366–380

    Article  CAS  Google Scholar 

  • Bowman MJ, Willis DK, Simon PW (2014) Transcript abundance of phytoene synthase 1 and phytoene synthase 2 is associated with natural variation of storage root carotenoid pigmentation in carrot. J Am Soc Hort Sci 139:63–68

    Article  CAS  Google Scholar 

  • Bradeen JM, Simon PW (1998) Conversion of an AFLP fragment linked to the carrot Y2 locus to a simple, codominant, PCR-based marker form. Theor Appl Genet 97:960–967

    Article  CAS  Google Scholar 

  • Bradeen JM, Bach IC, Briard M et al (2002) Molecular diversity analysis of cultivated carrot (Daucus carota L.) and wild Daucus populations reveals a genetically nonstructured composition. J Am Soc Hort Sci 127:383–391

    Article  CAS  Google Scholar 

  • Brothwell D, Brothwell P (1969) Food in antiquity. Johns Hopkins University Press, Baltimore, pp 111–112

    Google Scholar 

  • Buishand JG, Gabelman WH (1979) Investigations on the inheritance of colour and carotenoid content in phloem and xylem of carrot roots (Daucus carota L.). Euphytica 28:611–632

    Article  CAS  Google Scholar 

  • Cavagnaro PF, Chung SM, Manin S et al (2011) Microsatellite isolation and marker development in carrot—genomic distribution, linkage mapping, genetic diversity analysis and marker transferability across Apiaceae. BMC Genom 12:386

    Article  CAS  Google Scholar 

  • Cavagnaro PF, Iorizzo M Yildiz et al (2014) A gene-derived SNP-based high resolution linkage map of carrot including the location of QTL conditioning root and leaf anthocyanin pigmentation. BMC Genom 15:1118

    Article  Google Scholar 

  • Chen H, Patterson N, Reich D (2010) Population differentiation as a test for selective sweeps. Genome Res 20:393–402

    Article  CAS  Google Scholar 

  • Chen Y-Y, Xu Z-S, Xiong A-S et al (2016) Identification and characterization of DcUSAGT1, a UDP-glucose: sinapic acid glucosyltransferase from purple carrot taproots. Plos One 11:e154938

    Article  Google Scholar 

  • Clement-Mullet JJ (1866) Le livre de l’agriculture d’Ibn-al-Awam. A. Franck, Paris

    Google Scholar 

  • Clotault J, Geoffriau E, Lionneton E et al (2010) Carotenoid biosynthesis genes provide evidence of geographical subdivision and extensive linkage disequilibrium in the carrot. Theor Appl Genet 121:659–672

    Article  CAS  Google Scholar 

  • Clotault J, Peltier D, Soufflet-Freslon V et al (2012) Differential selection on carotenoid biosynthesis genes as a function of gene position in the metabolic pathway: a study on the carrot and dicots. Plos One 7:e38724

    Article  CAS  Google Scholar 

  • Darwin CR (1868) The variation of animals and plants under domestication. Murray, London

    Google Scholar 

  • De Candolle A (1884) Origin of cultivated plants. Kegan Paul, Trench & Co, London, UK

    Google Scholar 

  • Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321

    Article  CAS  Google Scholar 

  • Ellison S, Senalik D, Bostan H et al (2017) Fine mapping, transcriptome analysis, and marker development for Y2, the gene that conditions β-Carotene accumulation in carrot (Daucus carota L.). G3: Genes Genom Genet 8:2665–2675

    Article  CAS  Google Scholar 

  • Ellison S, Luby C, Corak K et al (2018) Carotenoid presence is associated with the Or gene in domesticated carrot. Genet. Accepted from https://doi.org/10.1534/genetics.118.301299

    Article  Google Scholar 

  • Fleischer RM, Touwaide A, Appetiti E et al (2010) Composition of pharmaceuticals from a 1st century BC/AD Roman shipwreck based on chloroplast DNA sequences. In: Fourth international symposium on biomolecular archaeology, Copenhagen. http://www.isba4.net/ISBA4_FINAL.pdf

  • Freeman RE, Simon PW (1983) Evidence for simple genetic control of sugar type in carrot (Daucus carota L.). J Am Soc Hort Sci 108:50–54

    Google Scholar 

  • Gepts P (2004) Crop domestication as a long-term selection experiment. In: Janick J (ed) Plant breeding reviews. Wiley, New York, NY, USA, pp 1–44

    Google Scholar 

  • Grzebelus D, Iorizzo M, Senalik D (2014) Diversity, genetic mapping, and signatures of domestication in the carrot (Daucus carota L.) genome, as revealed by diversity arrays technology (DArT) markers. Mol Breeding 33:625–637

    Article  CAS  Google Scholar 

  • Harlan JR (1971) Agricultural origins: centers and noncenters. Science 174:468–474

    Article  CAS  Google Scholar 

  • Harlan JR (1992) Crops and man. Crop Science Society of America, Madison, WI, USA

    Google Scholar 

  • Heywood VH (1983) Relationships and evolution in the Daucus carota complex. Isr J Bot 32:51–65

    Google Scholar 

  • Iorizzo M, Senalik D, Ellison S et al (2013) Genetic structure and domestication of carrot (Daucus carota subsp. sativus) (Apiaceae). Am J Bot 100:930–938

    Article  Google Scholar 

  • Iorizzo M, Ellison S, Senalik D et al (2016) A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet 48:657–666

    Article  CAS  Google Scholar 

  • Jourdan M, Gagné S, Dubois-Laurent C et al (2015) Carotenoid content and root color of cultivated carrot: a candidate-gene association study using an original broad Unstructured population. Plos One 10:e016674

    Article  Google Scholar 

  • Just BJ, Santos C, Boiteux LS et al (2007) Carotenoid biosynthesis structural genes in carrot (Daucus carota): isolation, sequence-characterization, single nucleotide polymorphism (SNP) markers and genome mapping. Theor Appl Genet 114:693–704

    Article  CAS  Google Scholar 

  • Just BJ, Santos CF, Yandell BS et al (2009) Major QTL for carrot color are associated with carotenoid biosynthetic genes and interact epistatically in a domesticated x wild carrot cross. Theor Appl Genet 119:1155–1169

    Article  Google Scholar 

  • Keilwagen J, Lehnert H, Berner T et al (2017) The terpene synthase gene family of carrot (Daucus carota L.): identification of QTLs and candidate genes associated with terpenoid volatile compounds. Frontiers Plant Sci 8:1930

    Google Scholar 

  • Kramer M, Bufler G, Ulrich D et al (2012) Effect of ethylene and 1-methylcyclopropene on bitter compounds in carrots (Daucus carota L.). Postharvest Biol Technol 73:28–36

    Article  CAS  Google Scholar 

  • Laferriere L, Gabelman WH (1968) Inheritance of color, total carotenoids, alpha carotene, and beta-carotene in carrots, Daucus carota L. Proc Am Soc Hort Sci 93:408–418

    Google Scholar 

  • Laufer B (1919) Sino-Iranica. Anthropological series, vol 15. Field Museum of Natural History, Publication 201, Chicago, pp 451–454

    Google Scholar 

  • Liu Y-J, Wang G-L, Ma J (2018) Transcript profiling of sucrose synthase genes involved in sucrose metabolism among four carrot (Daucus carota L.) cultivars reveals distinct patterns. BMC Plant Biol 18:8

    Google Scholar 

  • Lu S, Van Eck J, Zhou X et al (2006) The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of -carotene accumulation. Plant Cell 18:3594–3605

    Article  CAS  Google Scholar 

  • Luby CH, Dawson JC, Goldman IL (2016) Assessment and accessibility of phenotypic and genotypic diversity of carrot (Daucus carota L. var. sativus) cultivars commercially available in the United States. Plos One 11:e0167865

    Article  Google Scholar 

  • Ma ZG, Kong XP, Liu LJ et al (2016) The unique origin of orange carrot cultivars in China. Euphytica 212:37–49

    Article  CAS  Google Scholar 

  • Ma J, Xu Z, Tan G et al (2017) Distinct transcription profile of genes involved in carotenoid biosynthesis among six different color carrot (Daucus carota L.) cultivars. Acta Biochim Biophys Sin 49:817–826

    Article  CAS  Google Scholar 

  • Maass D, Arango J, Wüst F et al (2009) Carotenoid crystal formation in arabidopsis and carrot roots caused by increased phytoene synthase protein levels. PLoS ONE 4:e6373

    Article  Google Scholar 

  • Machaj G, Bostan H, Macko-Podgórni A et al (2018) Comparative transcriptomics of root development in wild and cultivated carrots. Genes 9:431

    Article  Google Scholar 

  • Mackevic VI (1929) The carrot of Afghanistan. Bul Appl Bot Genet Plant Breed 20:517562

    Google Scholar 

  • Macko-Podgórni A, Iorizzo M, Smółka K et al (2014) Conversion of a diversity arrays technology marker differentiating wild and cultivated carrots to a co-dominant cleaved amplified polymorphic site marker. Acta Biochim Pol 61:19–22

    Article  Google Scholar 

  • Macko-Podgórni A, Machaj G, Stelmach K et al (2017) Characterization of a genomic region under selection in cultivated carrot (Daucus carota subsp. sativus) reveals a candidate domestication gene. Frontiers Plant Sci 8:12

    Google Scholar 

  • Madeira NR, Reifschneider FJB, Giordano LB (2008) Contribuição portuguesa à produção e ao consumo de hortaliças no Brasil: uma revisão histórica. Hort Bras 26:428

    Article  Google Scholar 

  • Maksylewicz A, Baranski R (2013) Intra-population genetic diversity of cultivated carrot (Daucus carota L.) assessed by analysis of microsatellite markers. Acta Biochim Pol 60:753–760

    PubMed  Google Scholar 

  • Meyer RS, Purugganan MD (2013) Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet 14:840

    Article  CAS  Google Scholar 

  • Neuweiler E (1931) Die Pflanzenreste aus dem spätbronzezeitlichen Pfahlbau “sumpf” bei Zug. Vierteljahrschr Naturf Ges Zurich 76:116–132

    Google Scholar 

  • Nielsen R (2005) Molecular signatures of natural selection. Annu Rev Genet 39:197

    Article  CAS  Google Scholar 

  • Nissan E (2014) Language, culture, computation computational linguistics and linguistics etymothesis, fallacy, and ontologies: an illustration from phytonymy. Springer, pp 207–364

    Google Scholar 

  • Ou C-G, Mao J-H, Liu L-J et al (2016) Characterizing genes associated with flowering time in carrot (Daucus carota L.) using transcriptome analysis. Plant Biol 19:286–297

    Article  Google Scholar 

  • Rong J, Janson S, Umehara M et al (2010) Historical and contemporary gene dispersal in wild carrot (Daucus carota ssp. carota) populations. Ann Bot 106:285–296

    Article  CAS  Google Scholar 

  • Rong J, Lammers Y, Strasburg et al (2014) New insights into domestication of carrot from root transcriptome analyses. BMC Genom 15:895

    Article  Google Scholar 

  • Ross-Ibarra J, Morrell PL, Gaut BS (2007) Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc Natl Acad Sci USA 104:8641–8648

    Article  CAS  Google Scholar 

  • Rubatzky VE, Quiros CF, Simon PW (1999) Carrots and related vegetable umbelliferae. CAB International, Wallingford, pp 2–9

    Google Scholar 

  • Santos CA, Simon PW (2002) QTL analyses reveal clustered loci for accumulation of major provitamin A carotenes and lycopene in carrot roots. Mol Genet Genom 268:122–129

    Article  CAS  Google Scholar 

  • Santos CAF, Senalik D, Simon PW (2005) Path analysis suggests phytoene accumulation is the key step limiting the carotenoid pathway in white carrot roots. Genet Mol Biol 28:287–293

    Article  CAS  Google Scholar 

  • Shen Q, Ou C, Sun T et al (2018) QTL analysis of date of initial flowering main stalk length and seed weight per plant in carrot. Acta Hortic Sinica 3:571–578

    Google Scholar 

  • Shi J, Lai J (2015) Patterns of genomic changes with crop domestication and breeding. Curr Opin Plant Biol 24:47–53

    Article  Google Scholar 

  • Shim S, Jorgensen R (2000) Genetic structure in cultivated and wild carrots (Daucus carota L.) revealed by AFLP analysis. Theor Appl Genet 101:227–233

    Article  CAS  Google Scholar 

  • Shinohara S (1984) Introduction and variety development in Japan. In: Vegetable seed production technology of Japan elucidated with respective variety development histories, particulars, vol 1. Shinohara’s Authorized Agricultural Consulting Engineer Office 4-7-7, Tokyo, pp 273–282

    Google Scholar 

  • Simon PW (2000) Domestication, historical development, and modern breeding of carrot. Plant Breed Rev 19:147–190

    Google Scholar 

  • Simon PW, Freeman RE, Vieira JV et al (2008) Carrot. In: Prohens J, Nuez F (eds) Handbook of plant breeding, vol 2. Springer, New York, NY, pp 327–357

    Google Scholar 

  • Small E (1978) Numerical taxonomic analysis of Daucus carota complex. Can J Bot 56:248–276

    Article  Google Scholar 

  • Smartt NW, Simmonds JW (1976) Evolution of Crop Plants, 2nd edn. Longman Sci. Technol, Harlow, pp 291–293

    Google Scholar 

  • Soufflet-Freslon V, Jourdan M, Clotault J et al (2013) functional gene polymorphism to reveal species history: the case of the CRTISO gene in cultivated carrots. PLoS ONE 8(8):e70801

    Article  CAS  Google Scholar 

  • Stolarczyk J, Janick J (2011) Carrot: history and iconography Chron Hortic 51:13

    Google Scholar 

  • Thellung A (1927) Die Abstammung der Gartenmöhre (Daucus carota subsp. sativus) und der Gartenrettichs (Raphanus raphanistrum subsp. sativus). Feddes Repertorium Specierum Novarum Regni Vegetabilis 46:1–7

    Google Scholar 

  • Turner SD, Ellison SL, Senalik DA et al (2018) An automated, high-throughput image analysis pipeline enables genetic studies of shoot and root morphology in carrot (Daucus carota L.). https://doi.org/10.1101/384974

  • Vavilov NI (1926) Centres of origin of cultivated plants. Institut Botanique Appliqué et d’Amélioration des Plantes, Leningrad, USSR

    Google Scholar 

  • Vavilov NI (1951) The origin, variation, immunity and breeding of cultivated plants. Chron Bot 13:1–366

    Google Scholar 

  • Vergauwen D, Smet ID (2016) Down the rabbit hole—carrots, genetics, and art. Trends Plant Sci 21:895–898

    Article  CAS  Google Scholar 

  • Vilmorin M (1859) L’hérédité dans les végétaux. In: Vilmorin M (ed) Notice sur l’amelioration des plantes par la semis. Librairie Agricole, Paris, France, pp 5–29

    Google Scholar 

  • Wang H, Ou CG, Zhuang FY et al (2014) The dual role of phytoene synthase genes in carotenogenesis in carrot roots and leaves. Mol Breed 34:2065

    Article  CAS  Google Scholar 

  • Xu Z-S, Feng K, Que F et al (2017) A MYB transcription factor, DcMYB6, is involved in regulating anthocyanin biosynthesis in purple carrot taproots. Sci Rep 7:45324

    Article  CAS  Google Scholar 

  • Yau Y, Simon PW (2003) A 2.5-kb insert eliminates acid soluble invertase isozyme II transcript in carrot (Daucus carota L.) roots, causing high sucrose accumulation. Plant Mol Biol 53:151–162

    Article  CAS  Google Scholar 

  • Yau YY, Santos K, Simon P (2005) Molecular tagging and selection for sugar type in carrot roots using co-dominant, PCR-based markers. Mol Breed 16:1

    Article  CAS  Google Scholar 

  • Yildiz M, Willis DK, Cavagnaro PF et al (2013) Expression and mapping of anthocyanin biosynthesis genes in carrot. Theor Appl Genet 126:1689–1702

    Article  CAS  Google Scholar 

  • Zhang Z, Ersoz E, Lai C-Q et al (2010) Mixed linear model approach adapted for genome-wide association studies. Nature Genet 42:355–360

    Article  CAS  Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the old world. Oxford University Press, Oxford, UK

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shelby Ellison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ellison, S. (2019). Carrot Domestication. In: Simon, P., Iorizzo, M., Grzebelus, D., Baranski, R. (eds) The Carrot Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-03389-7_5

Download citation

Publish with us

Policies and ethics