Algarra M, Fernandes A, Mateus N et al (2014) Anthocyanin profile and antioxidant capacity of black carrots (Daucus carota L. ssp. sativus var. atrorubens Alef.) from Cuevas Bajas, Spain. J Food Compos Anal 33:71–76
CAS
CrossRef
Google Scholar
Andersen OM, Jordheim M (2006) The Anthocyanins. In: Andersen OM, Markham KR (eds) Flavonoids chemistry, biochemistry and applications. CRC Press, Taylor & Francis, Boca Raton, pp 471–551
Google Scholar
Bannoud F, Da Peña Hamparsomián J, Insani M et al (2018) Assessment of genetic diversity for root anthocyanin composition and phenolic content in purple carrots. In: 2nd international symposium on carrot and other Apiaceae, Krakow, Poland. Abstracts book, pp 45–46
Google Scholar
Bell DR, Gochenaur K (2006) Direct vasoactive and vasoprotective properties of anthocyanin-rich extracts. J Appl Physiol 100:1164–1170
CAS
CrossRef
Google Scholar
Cavagnaro PF, Iorizzo M, Yildiz M et al (2014) A gene-derived SNP-based high resolution linkage map of carrot including the location of QTL conditioning root and leaf anthocyanin pigmentation. BMC Genom 15:1118
CrossRef
Google Scholar
Charron CS, Clevidence BA, Britz SJ et al (2007) Effect of dose size on bioavailability of acylated and nonacylated anthocyanins from red cabbage (Brassica oleracea L. var. capitata). J Agric Food Chem 55:5354–5362
CAS
CrossRef
Google Scholar
Charron CS, Kurilich AC, Clevidence BA et al (2009) Bioavailability of anthocyanins from purple carrot juice: effects of acylation and plant matrix. J Agric Food Chem 57:1226–1230
CAS
CrossRef
Google Scholar
Chen YY, Xu ZS, Xiong AS (2016) Identification and characterization of DcUSAGT1, a UDP-glucose: sinapic acid glucosyltransferase from purple carrot taproots. PLoS ONE 11:e0154938
CrossRef
Google Scholar
Davies KM, Schwinn KE, Gould KS (2017) Anthocyanins. In: Thomas B, Murray BG, Murphy DJ (eds) Encyclopedia of applied plant sciences, vol 2, 2nd edn. Academic Press, Elsevier, Oxford, pp 355–363
CrossRef
Google Scholar
Dees C, Askari M, Garret S (1997) Estrogenic and DNA-damaging activity of Red No. 3 in human breast cancer cells. Environ Health Perspect 105:625–632
CAS
PubMed
PubMed Central
Google Scholar
Du H, Feng B-R, Yang S-S et al (2012a) The R2R3-MYB transcription factor gene family in maize. PLoS ONE 7:e37463
CrossRef
Google Scholar
Du H, Yang SS, Liang Z et al (2012b) Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC Plant Biol 12:106
CAS
CrossRef
Google Scholar
Feller A, Machemer K, Braun EL et al (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66:94–116
CAS
CrossRef
Google Scholar
Gläßgen W, Seitz H (1992) Acylation of anthocyanins with hydroxycinnamic acids via 1-O-acylglucosides by protein preparations from cell cultures of Daucus carota L. Planta 186:582–585
CrossRef
Google Scholar
Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504
CAS
CrossRef
Google Scholar
He J, Giusti MM (2010) Anthocyanins: natural colorants with health-promoting properties. Annu Rev Food Sci Technol 1:163–187
CAS
CrossRef
Google Scholar
He F, Mu L, Yan GL et al (2010) Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules 15:9057–9091
CAS
CrossRef
Google Scholar
Herrmann KM, Weaver LM (1999) The Shikimate Pathway. Annu Rev Plant Physiol Plant Mol Biol 50:473–503
CAS
CrossRef
Google Scholar
Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083
CAS
CrossRef
Google Scholar
Iorizzo M, Ellison S, Senalik D et al (2016) A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet 48:657–666
CAS
CrossRef
Google Scholar
Iorizzo M, Cavagnaro PF, Bostan H et al (2019) A cluster of MYB transcription factors regulates anthocyanin biosynthesis in carrot (Daucus carota L.) root and petiole. Front Plant Sci 9:1927
Google Scholar
Jayaprakasam B, Vareed SK, Olson LK et al (2005) Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits. J Agric Food Chem 53:28–31
CAS
CrossRef
Google Scholar
Jing P, Bomser JA, Schwartz SJ et al (2008) Structure-function relationships of anthocyanins from various anthocyanin-rich extracts on the inhibition of colon cancer cell growth. J Agric Food Chem 56:9391–9398
CAS
CrossRef
Google Scholar
Joseph JA, Shukitt-Hale B, Casadesus G (2005) Reversing the deleterious effects of aging on neuronal communication and behavior: beneficial properties of fruit polyphenolic compounds. Am J Clin Nutr 81:313S–316S
CAS
CrossRef
Google Scholar
Kammerer D, Carle R, Schieber A (2003) Detection of peonidin and pelargonidin glycosides in black carrots (Daucus carota ssp. sativus var. atrorubens Alef.) by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 17:2407–2412
CAS
CrossRef
Google Scholar
Kammerer D, Carle R, Schieber A (2004) Quantification of anthocyanins in black carrot extracts (Daucus carrota ssp. sativus var. atrorubens Alef.) and evaluation of their colour properties. Eur Food Res Technol 219:479–486
CAS
CrossRef
Google Scholar
Kodama M, Brinch-Pedersen H, Sharma S et al (2018) Identification of transcription factor genes involved in anthocyanin biosynthesis in carrot (Daucus carota L.) using RNA-Seq. BMC Genom 19:811
Google Scholar
Koutsogeorgopoulou L, Maravelias C, Methenitou G et al (1998) Immunological aspects of the common food colorants, amaranth and tartrazine. Vet Hum Toxicol 40:1–4
CAS
PubMed
Google Scholar
Kurilich AC, Clevidence BA, Britz SJ et al (2005) Plasma and urine responses are lower for acylated versus nonacylated anthocyanins from raw and cooked purple carrots. J Agric Food Chem 53:6537–6542
CAS
CrossRef
Google Scholar
Leja M, Kamińska I, Kramer M et al (2013) The content of phenolic compounds and radical scavenging activity varies with carrot origin and root color. Plant Foods Hum Nutr 68:163–170
CAS
CrossRef
Google Scholar
Lin BW, Gong CC, Song HF et al (2017) Effects of anthocyanins on the prevention and treatment of cancer. Br J Pharmacol 174:1226–1243
CAS
CrossRef
Google Scholar
Maeda K, Kimura S, Demura T (2005) DcMYB1 acts as a transcriptional activator of the carrot phenylalanine ammonia-lyase gene (DcPAL1) in response to elicitor treatment, UV-B irradiation and the dilution effect. Plant Mol Biol 59:739–752
CAS
CrossRef
Google Scholar
Matus JT, Aquea F, Arce-Johnson P (2008) Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biol 8:83
CrossRef
Google Scholar
Mazza G, Cacace JE, Kay CD (2004) Methods of analysis for anthocyanins in plants and biological fluids. J AOAC Int 87:129–145
CAS
PubMed
Google Scholar
McCann D, Barrett A, Cooper A et al (2007) Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: a randomised, double-blinded, placebo-controlled trial. Lancet 370:1560–1567
CAS
CrossRef
Google Scholar
Min HK, Kim S-M, Baek S-Y et al (2015) Anthocyanin extracted from black soybean seed coats prevents autoimmune arthritis by suppressing the development of Th17 cells and synthesis of proinflammatory cytokines by such cells, via inhibition of NF-κB. PLoS ONE 10:e0138201
CrossRef
Google Scholar
Montilla EC, Arzaba MR, Hillebrand S et al (2011) Anthocyanin composition of black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) cultivars antonina, beta sweet, deep purple, and purple haze. J Agric Food Chem 59:3385–3390
CAS
CrossRef
Google Scholar
Narayan MS, Naidu KA, Ravishankar GA et al (1999) Antioxidant effect of anthocyanin on enzymatic and non-enzymatic lipid peroxidation. Prostaglandins Leukot Essent Fatty Acids 60:1–4
CAS
CrossRef
Google Scholar
Netzel M, Netzel G, Kammerer DR et al (2007) Cancer cell antiproliferation activity and metabolism of black carrot anthocyanins. Innov Food Sci Emerg 8:365–372
CAS
CrossRef
Google Scholar
Olejnik A, Rychlik J, Kidoń M et al (2016) Antioxidant effects of gastrointestinal digested purple carrot extract on the human cells of colonic mucosa. Food Chem 190:1069–1077
CAS
CrossRef
Google Scholar
Prior RL, Wu X (2006) Anthocyanins: Structural characteristics that result in unique metabolic patterns and biological activities. Free Radic Res 40:1014–1028
CAS
CrossRef
Google Scholar
Rose A, Gläßgen W, Hopp W et al (1996) Purification and characterization of glycosyltransferases involved in anthocyanin biosynthesis in cell suspension cultures of Daucus carota L. Planta 198:397–403
CAS
CrossRef
Google Scholar
Sevimli-Gur C, Cetin B, Akay S et al (2013) Extracts from black carrot tissue culture as potent anticancer agents. Plant Foods Hum Nutr 68:293–298
CrossRef
Google Scholar
Shirley BW (1996) Flavonoid biosynthesis: “new” functions for an “old” pathway. Trends Plant Sci 1:377–382
Google Scholar
Simon PW (1996) Inheritance and expression of purple and yellow storage root color in carrot. J Hered 87:63–66
CrossRef
Google Scholar
Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456
CAS
CrossRef
Google Scholar
Sun T, Simon PW, Tanumihardjo SA (2009) Antioxidant phytochemicals and antioxidant capacity of biofortified carrots (Daucus carota L.) of various colors. J Agric Food Chem 57:4142–4147
CAS
CrossRef
Google Scholar
Vivek BS, Simon PW (1999) Linkage relationships among molecular markers and storage root traits of carrot (Daucus carota L. ssp. sativus). Theor Appl Genet 99:58–64
CAS
CrossRef
Google Scholar
Wako T, Kimura S, Chikagawa Y et al (2010) Characterization of MYB proteins as transcriptional regulatory factors for carrot phenylalanine ammonia-lyase gene (DcPAL3). Plant Biotechnol 27:131–139
CAS
CrossRef
Google Scholar
Wilkins O, Nahal H, Foong J et al (2009) Expansion and diversification of the Populus R2R3-MYB family of transcription factors. Plant Physiol 149:981–993
CAS
CrossRef
Google Scholar
Xu ZS, Huang Y, Wang F (2014) Transcript profiling of structural genes involved in cyanidin-based anthocyanin biosynthesis between purple and non-purple carrot (Daucus carota L.) cultivars reveals distinct patterns. BMC Plant Biol 14:262
Google Scholar
Xu ZS, Ma J, Wang F, Ma HY, Wang QX, Xiong AS (2016) Identification and characterization of DcUCGalT1, a galactosyltransferase responsible for anthocyanin galactosylation in purple carrot (Daucus carota L.) taproots. Sci Rep. 6:27356
Google Scholar
Xu Z-S, Feng K, Que F et al (2017) A MYB transcription factor, DcMYB6, is involved in regulating anthocyanin biosynthesis in purple carrot taproots. Sci Rep 7:45324
CAS
CrossRef
Google Scholar
Yildiz M, Willis DK, Cavagnaro PF et al (2013) Expression and mapping of anthocyanin biosynthesis genes in carrot. Theor Appl Genet 126:1689–1702
CAS
CrossRef
Google Scholar
Zhang Y, Butelli E, Martin C (2014) Engineering anthocyanin biosynthesis in plants. Curr Opin Plant Biol 19:81–90
CAS
CrossRef
Google Scholar
Zhang H, Liu R, Tsao R (2016) Anthocyanin-rich phenolic extracts of purple root vegetables inhibit pro-inflammatory cytokines induced by H2O2 and enhance antioxidant enzyme activities in Caco-2 cells. J Funct Foods 22:363–375
CAS
CrossRef
Google Scholar