Skip to main content

Carrot Anthocyanin Diversity, Genetics, and Genomics

Part of the Compendium of Plant Genomes book series (CPG)

Abstract

Purple carrots (Daucus carota ssp. sativus var. atrorubens Alef.) accumulate anthocyanins in their roots, petioles, and other plant parts. These flavonoid pigments represent an excellent dietary source of antioxidant and anti-inflammatory agents. In addition, carrot anthocyanins are also used as food dyes. Compositional variation in carrot root, mainly with regard to the content of acylated (AA) and non-acylated anthocyanins (NAA), strongly influences the bioavailability and chemical stability of these pigments, therefore conditioning their potential use as nutraceutical agents or as food colorants. In this context, genetic diversity analysis for root anthocyanin composition is relevant for selecting materials for either purpose. Also, knowledge on the genetic basis underlying anthocyanin biosynthesis and modification is expected to aid in the development of new varieties with high nutraceutical or for extracting food dyes. In the last decades, germplasm collections have been characterized for anthocyanin content and composition. Various simply inherited traits for root and petiole anthocyanin pigmentation and acylation, including P1, P3 and Raa1, and QTL for root anthocyanins, have been described and mapped to two regions of chromosome 3, in different genetic backgrounds. Recent advances in high-throughput sequencing and bioinformatic analyses have facilitated the discovery of candidate regulatory genes for root and petiole pigmentation associated with the P3 region in chromosome 3, as well as structural genes involved in anthocyanin glycosylation and acylation. In this chapter, we reviewed recent advances in diversity, genetic, and genomic studies related to carrot anthocyanin pigmentation.

Keywords

  • Anthocyanins
  • Candidate genes
  • MYB transcription factor
  • QTL mapping
  • Transcriptome

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-03389-7_15
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-03389-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 15.1

Modified from Holton and Cornish (1995)

Fig. 15.2
Fig. 15.3

Modified from Cavagnaro et al. (2014)

Fig. 15.4

Modified from Iorizzo et al. (2019)

Fig. 15.5

Modified from Iorizzo et al. (2019)

Abbreviations

AA:

Acylated anthocyanins

AC:

Antioxidant capacity

NAA:

Non-acylated anthocyanins

References

  • Algarra M, Fernandes A, Mateus N et al (2014) Anthocyanin profile and antioxidant capacity of black carrots (Daucus carota L. ssp. sativus var. atrorubens Alef.) from Cuevas Bajas, Spain. J Food Compos Anal 33:71–76

    CAS  CrossRef  Google Scholar 

  • Andersen OM, Jordheim M (2006) The Anthocyanins. In: Andersen OM, Markham KR (eds) Flavonoids chemistry, biochemistry and applications. CRC Press, Taylor & Francis, Boca Raton, pp 471–551

    Google Scholar 

  • Bannoud F, Da Peña Hamparsomián J, Insani M et al (2018) Assessment of genetic diversity for root anthocyanin composition and phenolic content in purple carrots. In: 2nd international symposium on carrot and other Apiaceae, Krakow, Poland. Abstracts book, pp 45–46

    Google Scholar 

  • Bell DR, Gochenaur K (2006) Direct vasoactive and vasoprotective properties of anthocyanin-rich extracts. J Appl Physiol 100:1164–1170

    CAS  CrossRef  Google Scholar 

  • Cavagnaro PF, Iorizzo M, Yildiz M et al (2014) A gene-derived SNP-based high resolution linkage map of carrot including the location of QTL conditioning root and leaf anthocyanin pigmentation. BMC Genom 15:1118

    CrossRef  Google Scholar 

  • Charron CS, Clevidence BA, Britz SJ et al (2007) Effect of dose size on bioavailability of acylated and nonacylated anthocyanins from red cabbage (Brassica oleracea L. var. capitata). J Agric Food Chem 55:5354–5362

    CAS  CrossRef  Google Scholar 

  • Charron CS, Kurilich AC, Clevidence BA et al (2009) Bioavailability of anthocyanins from purple carrot juice: effects of acylation and plant matrix. J Agric Food Chem 57:1226–1230

    CAS  CrossRef  Google Scholar 

  • Chen YY, Xu ZS, Xiong AS (2016) Identification and characterization of DcUSAGT1, a UDP-glucose: sinapic acid glucosyltransferase from purple carrot taproots. PLoS ONE 11:e0154938

    CrossRef  Google Scholar 

  • Davies KM, Schwinn KE, Gould KS (2017) Anthocyanins. In: Thomas B, Murray BG, Murphy DJ (eds) Encyclopedia of applied plant sciences, vol 2, 2nd edn. Academic Press, Elsevier, Oxford, pp 355–363

    CrossRef  Google Scholar 

  • Dees C, Askari M, Garret S (1997) Estrogenic and DNA-damaging activity of Red No. 3 in human breast cancer cells. Environ Health Perspect 105:625–632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Du H, Feng B-R, Yang S-S et al (2012a) The R2R3-MYB transcription factor gene family in maize. PLoS ONE 7:e37463

    CrossRef  Google Scholar 

  • Du H, Yang SS, Liang Z et al (2012b) Genome-wide analysis of the MYB transcription factor superfamily in soybean. BMC Plant Biol 12:106

    CAS  CrossRef  Google Scholar 

  • Feller A, Machemer K, Braun EL et al (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66:94–116

    CAS  CrossRef  Google Scholar 

  • Gläßgen W, Seitz H (1992) Acylation of anthocyanins with hydroxycinnamic acids via 1-O-acylglucosides by protein preparations from cell cultures of Daucus carota L. Planta 186:582–585

    CrossRef  Google Scholar 

  • Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504

    CAS  CrossRef  Google Scholar 

  • He J, Giusti MM (2010) Anthocyanins: natural colorants with health-promoting properties. Annu Rev Food Sci Technol 1:163–187

    CAS  CrossRef  Google Scholar 

  • He F, Mu L, Yan GL et al (2010) Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules 15:9057–9091

    CAS  CrossRef  Google Scholar 

  • Herrmann KM, Weaver LM (1999) The Shikimate Pathway. Annu Rev Plant Physiol Plant Mol Biol 50:473–503

    CAS  CrossRef  Google Scholar 

  • Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083

    CAS  CrossRef  Google Scholar 

  • Iorizzo M, Ellison S, Senalik D et al (2016) A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet 48:657–666

    CAS  CrossRef  Google Scholar 

  • Iorizzo M, Cavagnaro PF, Bostan H et al (2019) A cluster of MYB transcription factors regulates anthocyanin biosynthesis in carrot (Daucus carota L.) root and petiole. Front Plant Sci 9:1927

    Google Scholar 

  • Jayaprakasam B, Vareed SK, Olson LK et al (2005) Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits. J Agric Food Chem 53:28–31

    CAS  CrossRef  Google Scholar 

  • Jing P, Bomser JA, Schwartz SJ et al (2008) Structure-function relationships of anthocyanins from various anthocyanin-rich extracts on the inhibition of colon cancer cell growth. J Agric Food Chem 56:9391–9398

    CAS  CrossRef  Google Scholar 

  • Joseph JA, Shukitt-Hale B, Casadesus G (2005) Reversing the deleterious effects of aging on neuronal communication and behavior: beneficial properties of fruit polyphenolic compounds. Am J Clin Nutr 81:313S–316S

    CAS  CrossRef  Google Scholar 

  • Kammerer D, Carle R, Schieber A (2003) Detection of peonidin and pelargonidin glycosides in black carrots (Daucus carota ssp. sativus var. atrorubens Alef.) by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 17:2407–2412

    CAS  CrossRef  Google Scholar 

  • Kammerer D, Carle R, Schieber A (2004) Quantification of anthocyanins in black carrot extracts (Daucus carrota ssp. sativus var. atrorubens Alef.) and evaluation of their colour properties. Eur Food Res Technol 219:479–486

    CAS  CrossRef  Google Scholar 

  • Kodama M, Brinch-Pedersen H, Sharma S et al (2018) Identification of transcription factor genes involved in anthocyanin biosynthesis in carrot (Daucus carota L.) using RNA-Seq. BMC Genom 19:811

    Google Scholar 

  • Koutsogeorgopoulou L, Maravelias C, Methenitou G et al (1998) Immunological aspects of the common food colorants, amaranth and tartrazine. Vet Hum Toxicol 40:1–4

    CAS  PubMed  Google Scholar 

  • Kurilich AC, Clevidence BA, Britz SJ et al (2005) Plasma and urine responses are lower for acylated versus nonacylated anthocyanins from raw and cooked purple carrots. J Agric Food Chem 53:6537–6542

    CAS  CrossRef  Google Scholar 

  • Leja M, Kamińska I, Kramer M et al (2013) The content of phenolic compounds and radical scavenging activity varies with carrot origin and root color. Plant Foods Hum Nutr 68:163–170

    CAS  CrossRef  Google Scholar 

  • Lin BW, Gong CC, Song HF et al (2017) Effects of anthocyanins on the prevention and treatment of cancer. Br J Pharmacol 174:1226–1243

    CAS  CrossRef  Google Scholar 

  • Maeda K, Kimura S, Demura T (2005) DcMYB1 acts as a transcriptional activator of the carrot phenylalanine ammonia-lyase gene (DcPAL1) in response to elicitor treatment, UV-B irradiation and the dilution effect. Plant Mol Biol 59:739–752

    CAS  CrossRef  Google Scholar 

  • Matus JT, Aquea F, Arce-Johnson P (2008) Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biol 8:83

    CrossRef  Google Scholar 

  • Mazza G, Cacace JE, Kay CD (2004) Methods of analysis for anthocyanins in plants and biological fluids. J AOAC Int 87:129–145

    CAS  PubMed  Google Scholar 

  • McCann D, Barrett A, Cooper A et al (2007) Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: a randomised, double-blinded, placebo-controlled trial. Lancet 370:1560–1567

    CAS  CrossRef  Google Scholar 

  • Min HK, Kim S-M, Baek S-Y et al (2015) Anthocyanin extracted from black soybean seed coats prevents autoimmune arthritis by suppressing the development of Th17 cells and synthesis of proinflammatory cytokines by such cells, via inhibition of NF-κB. PLoS ONE 10:e0138201

    CrossRef  Google Scholar 

  • Montilla EC, Arzaba MR, Hillebrand S et al (2011) Anthocyanin composition of black carrot (Daucus carota ssp. sativus var. atrorubens Alef.) cultivars antonina, beta sweet, deep purple, and purple haze. J Agric Food Chem 59:3385–3390

    CAS  CrossRef  Google Scholar 

  • Narayan MS, Naidu KA, Ravishankar GA et al (1999) Antioxidant effect of anthocyanin on enzymatic and non-enzymatic lipid peroxidation. Prostaglandins Leukot Essent Fatty Acids 60:1–4

    CAS  CrossRef  Google Scholar 

  • Netzel M, Netzel G, Kammerer DR et al (2007) Cancer cell antiproliferation activity and metabolism of black carrot anthocyanins. Innov Food Sci Emerg 8:365–372

    CAS  CrossRef  Google Scholar 

  • Olejnik A, Rychlik J, Kidoń M et al (2016) Antioxidant effects of gastrointestinal digested purple carrot extract on the human cells of colonic mucosa. Food Chem 190:1069–1077

    CAS  CrossRef  Google Scholar 

  • Prior RL, Wu X (2006) Anthocyanins: Structural characteristics that result in unique metabolic patterns and biological activities. Free Radic Res 40:1014–1028

    CAS  CrossRef  Google Scholar 

  • Rose A, Gläßgen W, Hopp W et al (1996) Purification and characterization of glycosyltransferases involved in anthocyanin biosynthesis in cell suspension cultures of Daucus carota L. Planta 198:397–403

    CAS  CrossRef  Google Scholar 

  • Sevimli-Gur C, Cetin B, Akay S et al (2013) Extracts from black carrot tissue culture as potent anticancer agents. Plant Foods Hum Nutr 68:293–298

    CrossRef  Google Scholar 

  • Shirley BW (1996) Flavonoid biosynthesis: “new” functions for an “old” pathway. Trends Plant Sci 1:377–382

    Google Scholar 

  • Simon PW (1996) Inheritance and expression of purple and yellow storage root color in carrot. J Hered 87:63–66

    CrossRef  Google Scholar 

  • Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456

    CAS  CrossRef  Google Scholar 

  • Sun T, Simon PW, Tanumihardjo SA (2009) Antioxidant phytochemicals and antioxidant capacity of biofortified carrots (Daucus carota L.) of various colors. J Agric Food Chem 57:4142–4147

    CAS  CrossRef  Google Scholar 

  • Vivek BS, Simon PW (1999) Linkage relationships among molecular markers and storage root traits of carrot (Daucus carota L. ssp. sativus). Theor Appl Genet 99:58–64

    CAS  CrossRef  Google Scholar 

  • Wako T, Kimura S, Chikagawa Y et al (2010) Characterization of MYB proteins as transcriptional regulatory factors for carrot phenylalanine ammonia-lyase gene (DcPAL3). Plant Biotechnol 27:131–139

    CAS  CrossRef  Google Scholar 

  • Wilkins O, Nahal H, Foong J et al (2009) Expansion and diversification of the Populus R2R3-MYB family of transcription factors. Plant Physiol 149:981–993

    CAS  CrossRef  Google Scholar 

  • Xu ZS, Huang Y, Wang F (2014) Transcript profiling of structural genes involved in cyanidin-based anthocyanin biosynthesis between purple and non-purple carrot (Daucus carota L.) cultivars reveals distinct patterns. BMC Plant Biol 14:262

    Google Scholar 

  • Xu ZS, Ma J, Wang F, Ma HY, Wang QX, Xiong AS (2016) Identification and characterization of DcUCGalT1, a galactosyltransferase responsible for anthocyanin galactosylation in purple carrot (Daucus carota L.) taproots. Sci Rep. 6:27356

    Google Scholar 

  • Xu Z-S, Feng K, Que F et al (2017) A MYB transcription factor, DcMYB6, is involved in regulating anthocyanin biosynthesis in purple carrot taproots. Sci Rep 7:45324

    CAS  CrossRef  Google Scholar 

  • Yildiz M, Willis DK, Cavagnaro PF et al (2013) Expression and mapping of anthocyanin biosynthesis genes in carrot. Theor Appl Genet 126:1689–1702

    CAS  CrossRef  Google Scholar 

  • Zhang Y, Butelli E, Martin C (2014) Engineering anthocyanin biosynthesis in plants. Curr Opin Plant Biol 19:81–90

    CAS  CrossRef  Google Scholar 

  • Zhang H, Liu R, Tsao R (2016) Anthocyanin-rich phenolic extracts of purple root vegetables inhibit pro-inflammatory cytokines induced by H2O2 and enhance antioxidant enzyme activities in Caco-2 cells. J Funct Foods 22:363–375

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo F. Cavagnaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Cavagnaro, P.F., Iorizzo, M. (2019). Carrot Anthocyanin Diversity, Genetics, and Genomics. In: Simon, P., Iorizzo, M., Grzebelus, D., Baranski, R. (eds) The Carrot Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-03389-7_15

Download citation