Biomethane: Local Energy Carrier or European Commodity?

  • Thomas HorschigEmail author
  • Eric Billig
  • Stefan Majer
  • Daniela Thrän


In most European Union member states, natural gas plays an important and increasing role in energy provision to meet the demand for heat, electricity and transport. Nevertheless natural gas is a fossil energy carrier and various countries have started the stepwise transition from a fossil resource base towards a renewable energy-based energy system due to concerns regarding greenhouse gas emissions, energy security and conservation of finite resources. A biogenic substitute for natural gas is biomethane, defined as methane produced from biomass with properties similar to natural gas. It is a promising fuel to support the transition from fossil fuels to renewables and to support the greenhouse gas emissions reduction targets of the different European Union member states. Biomethane can be produced by upgrading biogas (biochemical conversion) or as so-called bio-SNG (biogenic synthetic natural gas) by thermo-chemical conversion of lignocellulosic biomass or other forms of lignin-rich biomass. Biomethane production via biochemical conversion is a widely applied technology. Bio-SNG via thermochemical conversion is currently barely applied in the respective market. At present, there is hardly any cross-border trade in biomethane in the EU. During the phase of implementation of the biogas and biogas upgrading industry, each member state started to develop its own regulations, standardisations and certifications. For a working European-wide biomethane trade, unified framework conditions like standardisations and certifications have to be established. This chapter gives a brief introduction to biomethane followed by an overview of biomethane use in several European countries. Afterwards, certification, which is a precondition for biomethane trade, is introduced and possible schemes enabling biomethane trade are presented, followed by an outlook.


  1. ADBA. (2016). December 2016 Market Report.Google Scholar
  2. Adler, P., Billig, E., Brosowski, A., Daniel-Gromke, J., Falke, I., Fischer, E., et al. (2014). Leitfaden Biogasaufbereitung und -einspeisung. Gülzow: FNR, Fachagentur Nachwachsende Rohstoffe e.V.Google Scholar
  3. AG Energiebilanzen e.V. (2016). Energieverbrauch in Deutschland Daten für das 1. Halbjahr 2016. Hg. v. AG Energiebilanzen e.V. Berlin.Google Scholar
  4. Ahrenfeldt, J., Jørgensen, B., & Thomsen, T. (2010). Bio-SNG potential assessment: Denmark 2020. Technical University of Denmark. Online verfügbar unter.
  5. Backman, M., & Rogulska, M. (2016). Biomethane use in Sweden. The Archives of Automotive Engineering – Archiwum 71 (1), S. 7–19.Google Scholar
  6. Billig, E., & Thraen, D. (2017). Renewable methane – A technology evaluation by multi-criteria decision making from a European perspective. Energy, 139, S.468–S.484. Scholar
  7. Biogas in Italy | ISAAC Project. (2016). Online verfügbar unter, zuletzt geprüft am 10.08.2017.
  8. Brijde, M., Dumont, M., & Blume, A. (2014). Contribution greengasgrids project to development in biomethane markets. In Green gas grids project, S. 48.Google Scholar
  9. Bundesamt für Wirtschaft und Ausfuhrkontrolle. (2017). Erstellung von Erdgasstatistiken. Online verfügbar unter, zuletzt geprüft am 10.08.2017.
  10. Deutsche Energie-Agentur DENA. (2016). Branchenbarometer Biomethan. Hg. v. Deutsche Energie-Agentur DENA.Google Scholar
  11. Dunkelberg, E., Salecki, S., Weiß, J., Rothe, S., & Böning, G. (2015). Biomethan im Energiesystem – Ökologische und ökonomische Bewertung von Aufbereitungsverfahren und Nutzungsoptionen: Institut für ökologische Wirtschaftsforschung (IÖW).Google Scholar
  12. ENER/DG/UNIT4. (2014). Supplier countries – Energy – European Commission. Online verfügbar unter, zuletzt aktualisiert am 16.07.2014, zuletzt geprüft am 10.08.2017.
  13. Energi Styrelsen. (2014). ENERGISTATISTIK 2014. Online verfügbar unter, zuletzt geprüft am 10.08.2017.
  14. European Biogas Association. (2016a). 6th edition of the statistical report of the European Biogas Association. Online verfügbar unter
  15. European Biogas Association. (2016b). Establishment of the ERGaR aisbl. Online verfügbar unter, zuletzt geprüft am 27.09.2017.
  16. Fachagentur Nachwachsende Rohstoffe e.V. (2017). Kraftstoffverbrauch Deutschland 2016. Hg. v. Fachagentur Nachwachsende Rohstoffe e.V. Online verfügbar unter, zuletzt aktualisiert am 02.08.2017, zuletzt geprüft am 28.08.2017.
  17. GAS DEMAND AND SUPPLY IN ITALY – Snam Rete Gas Ten-year network development. (2016). Online verfügbar unter, zuletzt geprüft am 10.08.2017.
  18. GNT Biogaz, ADEME. (2014). Green Gas Grids, une vision pour le biométhane en France pour 2030. Online verfügbar unter
  19. Horschig, T., Adams, P. W. R., Röder, M., Thornley, P., & Thrän, D. (2016a). Reasonable potential for GHG savings by anaerobic biomethane in Germany and UK derived from economic and ecological analyses. Applied Energy, 184, 840–852. Scholar
  20. Horschig, T., Billig, E., & Thrän, D. (2016b). Model-based estimation of market potential for Bio-SNG in the German biomethane market until 2030 within a system dynamics approach. Agronomy Research, 14(3), 754–767.Google Scholar
  21. IERE. (2017). Ireland’s first green gas certificate scheme a step closer with launch of greengascert research project. In IERE – International Energy Research Centre – Ireland.Google Scholar
  22. Kerdoncuff, P. (2008). Modellierung und Bewertung von Prozessketten zur Herstellung von Biokraftstoffen der zweiten Generation. Karlsruhe: Universitätsverlag Karlsruhe.Google Scholar
  23. Kopyscinski, J., Schildhauer, T. J., & Biollaz, S. M. A. (2010). Production of synthetic natural gas (SNG) from coal and dry biomass – A technology review from 1950 to 2009. Fuel, 89(8), 1763–1783. Scholar
  24. Kovacs, A., Keuschnig, F., Wolf, A. (2017). Proposal for the establishment of national and European biomethane certificate trading platforms. Online verfügbar unter, zuletzt geprüft am 06.09.2017.
  25. Ministere de l’Environment, de l’energie et de la mer. (2016). Chiffres clés de l’énergie Édition 2016. Online verfügbar unter
  26. Natural gas consumption statistics – Statistics Explained. (2016). Online verfügbar unter, zuletzt geprüft am 10.08.2017.
  27. Perrella, G., & D’Innocenzo, W. (2016). The potential role of biomethane in Italian transport. EA Bioenergy ExCo77 workshop. EA Bioenergy ExCo77 workshop. Rom, 17.05.2016. Online verfügbar unter
  28. Scholwin, F., Grope, J., Schüch, A., Daniel-Gromke, J., Beil, M., & Holzhammer, U. (2014). Ist-Stand der Biomethannutzung. Kosten – Klimawirkungen – Verwertungswege.Google Scholar
  29. Sweden: 73% of biomethane used in Swedish CNG vehicles – European Biogas Association. (2016). Online verfügbar unter, zuletzt geprüft am 10.08.2017.
  30. Syndicat des énergies renouvelables. (2016). PANORAMA DU PANORAME DU GAZ RENOUVELABLE EN 2016.Google Scholar
  31. Thrän, D., Billig, E., Persson, T., Svensson, M., Daniel-Gromke, J., Ponitka, J., et al. (2014). Biomethane – status and factors affecting market development and trade: IEA Bioenergy.Google Scholar
  32. Wellinger, A. (2013). Standards for biomethane as vehicle fuel and for injection into the natural gas grid: Green Gas Grids.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Thomas Horschig
    • 1
    Email author
  • Eric Billig
    • 2
  • Stefan Majer
    • 1
  • Daniela Thrän
    • 1
    • 2
    • 3
  1. 1.DBFZ - Deutsches Biomasseforschungszentrum gemeinnützige GmbHLeipzigGermany
  2. 2.Helmholtz Centre for Environmental Research – UFZLeipzigGermany
  3. 3.Department Bioenergy SystemsUniversity of LeipzigLeipzigGermany

Personalised recommendations