Free Radicals, Diabetes, and Its Complexities

  • F. Taghavi
  • Ali A. Moosavi-MovahediEmail author


Diabetes and its complexity from a molecular and biomolecular perspective and biophysical and biochemical approach have looked less in literature. In this chapter, an overview of biomolecular research, molecular stress, and ways to prevent it and effective suggestions have been outlined.

Our experiments indicated (a) the ROS production just by sugar autoxidation alone and (b) Maillard initiation and glycotoxin formation via incubated proteins with nonsugar food preservatives. Advanced glycation end products (AGEs) and carbonyl-derived products are considered as two important toxic materials which are produced in glycation process due to the presence of sugar or even without sugar just by oxidative preservatives. Both of these glycotoxins are involved in protein aggregation and amyloid fibril formation, which lead to extra- or intra-protein deposition in the body. All of these abnormal structures disturb body homeostasis and can lead to diabetes and its related diseases. In addition, antioxidants have a crucial role in human health. External antibodies (like ellagic acid, curcumin, nutraceuticals, bioactive peptides) and internal antioxidants (like melatonin as sleep hormone, ketone bodies, etc.) play an important role in protection against oxidative stress, directly or indirectly, and fight with oxidative stress and cell death in special manners. Also, they can adjust and remove fibrillar protein products.

Our important message based on our original research is “diabetes mellitus is a stress-dependent disease, and stress in molecular concept is directly referred to every tension which produces free radicals. Calm and healthy living are provided by avoiding any stressors in every aspect like industrial cosmetics and hygiene products, food stress, microwave radiations, cigarettes, aromatic substances, synthetic perfumes, and alcohol.” With regard to the extra presence of oxidative agents in our common life (preservatives in food, cosmetic, and drug products), emphasis on the fundamental researches of free radicals for their better understanding and introducing potent antioxidants for public health are very important. Indeed, antioxidant capacity in human being lifestyle is one of the most important concepts for fighting with internal and external oxidative stimuli.


Free radicals ROS Oxidative stress Preservatives in food Glycation Diabetes and its complications Antioxidants Lifestyle 



The support from University of Tehran, Iran National Science Foundation (INSF), Iran’s National Elites Foundation (INEF), and UNESCO Chair on Interdisciplinary Research in Diabetes is gratefully acknowledged.


  1. Abele D, Puntarulo S (2004) Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comp Biochem Physiol A Mol Integr Physiol 138(4):405–415PubMedCrossRefGoogle Scholar
  2. Abele D, Vazquez-Medina JP, Zenteno-Savin T (2011) Oxidative stress in aquatic ecosystems. Wiley-Blackwell, ChichesterCrossRefGoogle Scholar
  3. Abele D, Vázquez-Medina JP, Zenteno-Savín T (2012) In: Regoli F (ed) Chemical pollutants and the mechanisms of reactive oxygen species generation in aquatic organisms: oxidative stress in aquatic ecosystems. Wiley-Blackwell, ChichesterGoogle Scholar
  4. Advanced Life Support Group (2001) Acute medical emergencies: the practical approach. BMJ Books, London 454 pGoogle Scholar
  5. Ahmed N (2005) Advanced glycation end products–role in pathology of diabetic complications. Diabetes Res Clin Pract 67(1):3–21PubMedCrossRefPubMedCentralGoogle Scholar
  6. Alexander GK, Taylor AG, Innes KE, Kulbok P, Selfe TK (2008) Contextualizing the effects of yoga therapy on diabetes management: a review of the social determinants of physical activity. Fam Community Health 31(3):228–239PubMedPubMedCentralCrossRefGoogle Scholar
  7. Alp R, Selek S, Alp SI, Taşkin A, Koçyiğit A (2010) Oxidative and antioxidative balance in patients of migraine. Eur Rev Med Pharmacol Sci 14(10):877–882PubMedGoogle Scholar
  8. Andrey ZM, Vladimir ZM (2016) An integral concept of regulating immune homeostasis. J Clin Exp Pathol 6:267CrossRefGoogle Scholar
  9. Aprioku JS (2013) Pharmacology of free radicals and the impact of reactive oxygen species on the testis. J Reprod Infertil 14(4):158–172PubMedPubMedCentralGoogle Scholar
  10. Araújo IPS, Costa DB, de Moraes RJB (2014) Identification and characterization of particulate matter concentrations at construction job sites. Sustainability 6(11):7666–7688CrossRefGoogle Scholar
  11. Ayas N (2003) A prospective study of self reported sleep duration and incident diabetes in women. Diabetes Care 26(2):380–384PubMedCrossRefGoogle Scholar
  12. Aydina B, Akarb A (2011) Effects of a 900-MHz electromagnetic field on oxidative stress parameters in rat lymphoid organs, polymorphonuclear leukocytes and plasma. Arch Med Res 42(4):261–267CrossRefGoogle Scholar
  13. Babbs CF (1988) Reperfusion injury of post-ischemic tissues. Ann Emerg Med 17:1148–1157PubMedCrossRefGoogle Scholar
  14. Bagnyukova TV, Danyliv SI, Zin'ko OS, Lushchak VI (2007) Heat shock induces oxidative stress, in rotan Perccottus glenii tissues. J Therm Biol 32(5):255–260CrossRefGoogle Scholar
  15. Bana T, Hoshino M, Takahashi S, Hamada D, Hasegawa K, Nai-kic H et al (2007) Direct observation of Abeta amyloid fibril growth and inhibition. J Mol Biol 17(12):2027–2032Google Scholar
  16. Baysoy E, Atli G, Gurler CO, Dogan Z, Eroglu A, Kocalar K et al (2012) The effects of increased freshwater salinity in the biodisponibility of metals (Cr, Pb) and effects on antioxidant systems of Oreochromis niloticus. Ecotoxicol Environ Saf 84:249–253PubMedCrossRefGoogle Scholar
  17. Beamonte-Barrientos R, Verhulst S (2013) Plasma reactive oxygen metabolites and non-enzymatic antioxidant capacity are not affected by an acute increase of metabolic rate in zebra finches. J Comp Physiol B 183(5):675–683PubMedCrossRefGoogle Scholar
  18. Behnam-Rad M, Taghavi F, Moosavi-Movahedi AA (2014) The role of lifestyles in diabetes adjustment. Sci Cult 5:12–21Google Scholar
  19. Belz MC, Mairinger R, Zannini E, Ryan LA, Cashman KD, Arendt EK (2012) The effect of sourdough and calcium propionate on the microbial shelf-life of salt reduced bread. Appl Microbiol Biotechnol 96(2):493–501PubMedCrossRefGoogle Scholar
  20. Betteridge DJ (2000) What is oxidative stress? Metabolism 49(2 Suppl 1):3–8PubMedCrossRefGoogle Scholar
  21. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5(1):9–19PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bogousslavsky J, Inglin M (2007) Beliefs and the brain. Eur Neurol 58(3):129–132PubMedCrossRefGoogle Scholar
  23. Bohlooli M, Saboury AA, Taghavi F, Habibi-Rezaei M, Sarvari S, Moosavi-Movahedi AA (2016) Fasting reduces the binding between sugar and protein: new insights into diabetic complications. Biomacromol J 2:93–96Google Scholar
  24. Brennan LA, Kantorow M (2009) Mitochondrial function and redox control in the aging eye: role of MsrA and other repair systems in cataract and macular degenerations. Exp Eye Res 88(2):195–203PubMedCrossRefGoogle Scholar
  25. Brindley DN, Rolland Y (1989) Possible connections between stress, diabetes, obesity, hypertension and altered lipoprotein metabolism that may result in atherosclerosis. Clin Sci (Lond) 77(5):453–461CrossRefGoogle Scholar
  26. Brook RD, Rajagopalan S (2010) Particulate matter air pollution and atherosclerosis. Curr Atheroscler Rep 12(5):291–300PubMedCrossRefGoogle Scholar
  27. Bross P, Gregersen N (2016) Methods in molecular biology: protein misfolding and disease principles and protocols, vol 232. Human Press Inc, Totowa, NJGoogle Scholar
  28. Brownell KD, Warner KE (2009) The perils of ignoring history: big tobacco played dirty and millions died. How similar is big food? Milbank Q 87(1):259–294PubMedPubMedCentralCrossRefGoogle Scholar
  29. Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54(6):1615–1625CrossRefGoogle Scholar
  30. Brownlee M, Vlassara H, Cerami A (1984) Non-enzymatic glycosylation and the pathogenesis of diabetic complications. Ann Intern Med 101(4):527–537PubMedCrossRefPubMedCentralGoogle Scholar
  31. Buckalew LW, Rizzuto A (1982) Subjective response to negative air ion exposure. Aviat Space Environ Med 53(8):822–823PubMedPubMedCentralGoogle Scholar
  32. Buka I, Osornio-Vargas A, Clark B (2011) Food additives, essential nutrients and neurodevelopmental behavioural disorders in children: a brief review. Paediatr Child Health 16(7):e54–e56PubMedPubMedCentralCrossRefGoogle Scholar
  33. Buysse DJ (2005) In: Oldham JM, Riba MB (eds) Sleep disorders and psychiatry (review of psychiatry series), vol 24., N. 2. American Psychiatric Publishing, Washington, DCGoogle Scholar
  34. Cadenas E, Packer L (2002) Handbook of antioxidants, 2nd edn. Marcel Dekker Inc., New YorkGoogle Scholar
  35. Cai H, Cong W, Ji S, Rothman S, Maudsley S, Martin B (2012) Metabolic dysfunction in Alzheimer’s disease and related neurodegenerative disorders. Curr Alzheimer Res 9(1):5–17PubMedPubMedCentralCrossRefGoogle Scholar
  36. Candace P (2003) Molecules of emotion: why you feel the way you feel. Scribner Publications, New YorkGoogle Scholar
  37. Canon WB, Higginson G (1932) The wisdom of the Body, 1st edn. W W Norton & Company, Inc, New YorkGoogle Scholar
  38. Carbajo JB, Perdigón-Melón JA, Petre AL, Rosal R, Letón P, García-Calvo E (2015) Personal care product preservatives: risk assessment and mixture toxicities with an industrial waste water. Water Res 72:174–185PubMedCrossRefPubMedCentralGoogle Scholar
  39. Chaudieáre J, Ferrari-Iliou R (1999) Intracellular antioxidants: from chemical to biochemical mechanisms. Food Chem Toxicol 37(9-10):949–962CrossRefGoogle Scholar
  40. Chopra D (1993) Ageless body, timeless mind: the quantum alternative to growing old. Three Rivers Press, New YorkGoogle Scholar
  41. Chowański S, Lubawy J, Paluch-Lubawa E, Spochacz M, Rosiński G, Słocińska M (2017) The physiological role of fat body and muscle tissues in response to cold stress in the tropical cockroach Gromphadorhina coquereliana. PLoS One:1–18Google Scholar
  42. Dalal NS, Suryan MM, Vallyathan V, Green FHY, Jafari B, Wheeler R (1989) Detection of reactive free radicals in fresh coal mine dust and their implication for pulmonary injury. Ann Occup Hyg 33(1):79–84PubMedGoogle Scholar
  43. Dalle-Donne I, Rossi R, Giustarini D, Colombo AR (2003a) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329(1-2):23–38PubMedCrossRefGoogle Scholar
  44. Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A (2003b) Protein carbonylation in human diseases. Trends Mol Med 9(4):169–176PubMedCrossRefGoogle Scholar
  45. Darzi J, Frost GS, Robertson MD (2012) Effects of a novel propionate-rich sourdough bread on appetite and food intake. Eur J Clin Nutr 66(7):789–794PubMedCrossRefPubMedCentralGoogle Scholar
  46. Dav’I G, Santilli F, Patrono C (2010) Nutraceuticals in diabetes and metabolic syndrome. Cardiovasc Ther 28(4):216–226CrossRefGoogle Scholar
  47. Debbasch C, Brignole F, Pisella PJ, Warnet JM, Rat P, Baudouin C (2001) Quaternary ammoniums and other preservatives’ contribution in oxidative stress and apoptosis on change conjunctival cells. Invest Ophthalmol Vis Sci 42(3):642–652PubMedPubMedCentralGoogle Scholar
  48. Du Y, Xu X, Chu M, Guo Y, Wang J (2016) Air particulate matter and cardiovascular disease: the epidemiological, biomedical and clinical evidence. J Thorac Dis 8(1):E8–E19PubMedPubMedCentralGoogle Scholar
  49. Easterling DR, Horton B, Jones PD, Peterson TC, Karl TR, Parker DE et al (1997) Maximum and minimum temperature trends for the globe. Science 277(5324):364–367CrossRefGoogle Scholar
  50. Epstein PR (2001) Climate change and emerging infectious diseases. Microbes Infect 3(9):747–754PubMedCrossRefPubMedCentralGoogle Scholar
  51. European Commission (1999) Food science and techniques: reports of the scientific committee for food. 42th series. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  52. Faggio C, Paganoa M, Alampia R, Vazzanab I, Felice MR (2016) Cytotoxicity, haemolymphatic parameters, and oxidative stress following exposure to sub-lethal concentrations of quaternium-15 in Mytilus galloprovincialis. Aquat Toxicol 180:258–265PubMedCrossRefGoogle Scholar
  53. Fentem PH (1994) Benefits of exercise in health and disease. Br Med J 308:1291CrossRefGoogle Scholar
  54. Finkel T, Holbrook NJ (2000) Oxidants, oxidative, stress and the biology of ageing. Nature 408(6809):239–247PubMedCrossRefGoogle Scholar
  55. Fiordelisi A, Piscitelli P, Trimarco B, Coscioni E, Iaccarino G, Sorriento D (2017) The mechanisms of air pollution and particulate matter in cardiovascular diseases. Heart Fail Rev 22(3):337–347PubMedCrossRefGoogle Scholar
  56. Florence TM (1995) The role of free radicals in disease. Aust N Z J Ophthalmol 23(1):3–7PubMedCrossRefGoogle Scholar
  57. Forbes JM, Cooper ME (2013) Mechanisms of diabetic complications. Physiol Rev 93(1):137–188PubMedCrossRefGoogle Scholar
  58. Fubini B (1998) Surface chemistry and quartz hazard. Ann Occup Hyg 42(8):521–530PubMedCrossRefGoogle Scholar
  59. Fuzzi S, Baltensperger U, Carslaw K, Decesari S, Denier van der Gon H, Facchini MC et al (2015) Particulate matter, air quality and climate: lessons learned and future needs. Atmos Chem Phys 15:8217–8299CrossRefGoogle Scholar
  60. Gadoth N, Göbel HH (2011) In: Friedman J (ed) Oxidative stress and free radical damage in neurology: the role of free radicals in the nervous system. Humana Press, New YorkCrossRefGoogle Scholar
  61. Gaestel M (2010) Biological monitoring of non-thermal effects of mobile phone radiation: recent approaches and challenges. Biol Rev Camb Philos Soc 85(3):489–500PubMedGoogle Scholar
  62. George C, Ammann M, D’Anna B, Donaldson DJ, Nizkorodov SA (2015) Heterogeneous photochemistry in the atmosphere. Chem Rev 115(10):4218–4258PubMedPubMedCentralCrossRefGoogle Scholar
  63. Goldberger L, Breznitz S (1993) Handbook of stress, 2nd edn. The Free Press, New YorkGoogle Scholar
  64. Golem DL, Martin-Biggers JT, Koenings MM, Davis KF, Byrd-Bredbenner C (2014) An integrative review of sleep for nutrition professionals. Adv Nutr 5:742–759PubMedPubMedCentralCrossRefGoogle Scholar
  65. Goodarzi M, Moosavi-Movahedi AA, Habibi-Rezaei M, Shourian M, Ghourchian H, Ahmad F et al (2014) Hemoglobin fructation promotes heme degradation through the generation of endogenous reactive oxygen species. Spectrochim Acta A Mol Biomol Spectrosc 130:561–567PubMedCrossRefGoogle Scholar
  66. Gosling SN, Lowe JA, McGregor GR, Pelling M, Malamud BD (2009) Associations between elevated atmospheric temperature and human mortality: a critical review of the literature. Clim Chang 92(3-4):299–341CrossRefGoogle Scholar
  67. Gould GW (1996) Methods for preservation and extension of shelf life. Int J Food Microbiol 33(1):51–64PubMedCrossRefGoogle Scholar
  68. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, LondonGoogle Scholar
  69. Helmrich S, Ragland DR, Leung RW (1991) Physical activity and reduced occurrence of non-insulin-dependent diabetes mellitus. N Engl J Med 325(3):147–152PubMedCrossRefGoogle Scholar
  70. Horton JW (2003) Free radicals and lipid peroxidation mediated injury in burn trauma: the role of antioxidant therapy. Toxicology 189(1-2):75–88PubMedCrossRefGoogle Scholar
  71. Hu F, Manson J (2001) Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med 345:790–797PubMedCrossRefGoogle Scholar
  72. Hunt JV, Dean RT, Wolff SP (1988) Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. Biochem J 256(1):205–212PubMedPubMedCentralCrossRefGoogle Scholar
  73. Ignatowicz E, Woźniak A, Kulza M, Seńczukrzybyłowska M, Cimino F, Piekoszewski W et al (2013) Exposure to alcohol and tobacco smoke causes oxidative stress in rats. Pharmacol Rep 65(4):906–913PubMedCrossRefGoogle Scholar
  74. Igumbor EU, Sanders D, Puoane TR, Tsolekile L, Schwarz C, Purdy C et al (2012) “Big food,” the consumer food environment, health, and the policy response in South Africa. PLoS Med 9:e1001253PubMedPubMedCentralCrossRefGoogle Scholar
  75. Innes KE, Vincent HK (2007) The influence of yoga-based programs on risk profiles in adults with type 2 diabetes mellitus: a systematic review. Evid Based Complement Alternat Med 4(4):469–486PubMedCrossRefGoogle Scholar
  76. Jurenka J (2008) Therapeutic applications of pomegranate (Punica granatum L.): a review. Altern Med Rev 13(2):128–144PubMedGoogle Scholar
  77. Kelly FJ (2003) Oxidative stress: it’s role in air pollution and adverse health effects. Occup Environ Med 60(8):612–616PubMedPubMedCentralCrossRefGoogle Scholar
  78. Kikuchi S, Shinpo K, Takeuchi M, Yamagishi S, Makita Z, Sasaki N et al (2003) Glycation—a sweet tempter for neuronal death. Brain Res Rev 41(2-3):306–323PubMedCrossRefGoogle Scholar
  79. Kim HJ, Chatani E, Goto Y, Paik SR (2007) Seed-dependent accelerated fibrillation of alpha-synuclein induced by periodic ultrasonication treatment. J Microbial Biotechnol 17:2027–2032Google Scholar
  80. Kinney PL, O’Neill MS, Bell ML, Schwartz J (2008) Approaches for estimating effects of climate change on heat-related deaths: challenges and opportunities. Environ Sci Pol 11(1):87–96CrossRefGoogle Scholar
  81. de la Monte SM, Wands JR (2008) Alzheimer’s disease is type 3 diabetes–evidence reviewed. J Diabetes Sci Technol 2(6):1101–1113PubMedPubMedCentralCrossRefGoogle Scholar
  82. Lamas A, Miranda JM, Vázquez B, Cepeda A, Franco CM (2016) An evaluation of alternatives to nitrites and sulfites to inhibit the growth of salmonella enterica and listeria monocytogenes in meat products. Foods 5(4):74PubMedCentralCrossRefPubMedGoogle Scholar
  83. Leung C, Herath CB, Jia Z, Andrikopoulos S, Brown BE, Davies MJ et al (2016) Dietary advanced glycation end-products aggravate non-alcoholic fatty liver disease. World J Gastroenterol 22(35):8026–8040PubMedPubMedCentralCrossRefGoogle Scholar
  84. Levine RL, Stadtman ER (2001) Oxidative modification of proteins during aging. Exp Gerontol 36(9):1495–1502PubMedCrossRefGoogle Scholar
  85. Lim YK, Cai M, Kalnay E, Zhou L (2005) Observational evidence of sensitivity of surface climate changes to land types and urbanization. Geophys Res Lett 32(22):70–72CrossRefGoogle Scholar
  86. Limón-Pacheco J, Gonsebatt ME (2009) The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutat Res 674(1-2):137–147PubMedCrossRefGoogle Scholar
  87. Lind-Albrecht G (2006) Patient education in rheumatology: a way to better disease management using patients’ empowerment. Wien Med Wochenschr 156(21-22):583–586PubMedCrossRefGoogle Scholar
  88. Loro VL, Jorge MB, da Silva KR, Wood CM (2012) Oxidative stress parameters and antioxidant response to sublethal waterborne zinc in a euryhaline teleost Fundulus heteroclitus: protective effects of salinity. Aquat Toxicol 110–111:187–193PubMedCrossRefGoogle Scholar
  89. Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101(1):13–30PubMedCrossRefGoogle Scholar
  90. Lushchak V, Semchyshyn HM (2012) In: Stefanyk V (ed) Oxidative stress – molecular mechanisms and biological effects: introductory chapter. Precarpathian National University, UkraineGoogle Scholar
  91. Malek RL, Sajadi H, Abraham J, Grundy MA, Gerhard GS (2004) The effects of temperature reduction on gene expression and oxidative stress in skeletal muscle from adult zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 138(3):363–373PubMedCrossRefGoogle Scholar
  92. Marieb EN, Hoehn K (2007) Human anatomy & physiology, 7th edn. Pearson Benjamin Cummings, San Francisco, CAGoogle Scholar
  93. Miranda HV, Outeiro TF (2010) The sour side of neurodegenerative disorders: the effects of protein glycation. J Pathol 221(1):13–25CrossRefGoogle Scholar
  94. Mofidi-Najjar F, Taghavi F, Ghadari R, Sheibani N, Moosavi-Movahedi AA (2017) Destructive effect of non-enzymatic glycation on catalase and remediation via curcumin. Arch Biochem Biophys 630:81–90PubMedCrossRefGoogle Scholar
  95. Mohamed S (2014) Functional foods against metabolic syndrome (obesity, diabetes, hypertension and dyslipidemia) and cardiovascular disease. Trends Food Sci Technol 35:114–128CrossRefGoogle Scholar
  96. Moore-Ede MC (1986) Physiology of the circadian timing system: predictive versus reactive homeostasis. Am J Phys 250(5 Pt 2):R737–R752Google Scholar
  97. Mousavy SJ, Riazi GH, Kamarei M, Aliakbarian H, Sattarahmady N, Sharifizadeh A et al (2009) Effects of mobile phone radiofrequency on the structure and function of the normal human hemoglobin. Int J Biol Macromol 44:278–285PubMedCrossRefGoogle Scholar
  98. Myles IA (2014) Fast food fever: reviewing the impacts of the Western diet on immunity. Nutr J 13:61PubMedPubMedCentralCrossRefGoogle Scholar
  99. Oberhuber JM, Roeckner E, Christoph M, Esch M, Latif M (1998) Predicting the’97 El Niño event with a global climate model. Geophys Res Lett 25(13):2273–2276CrossRefGoogle Scholar
  100. Pathak M (2014) Diabetes mellitus type 2 and functional foods of plant origin. Recent Pat Biotechnol 8(2):160–164PubMedCrossRefGoogle Scholar
  101. Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438(7066):310–317PubMedCrossRefGoogle Scholar
  102. Peng X, Ma J, Chen F, Wang M (2011) Naturally occurring inhibitors against the formation of advanced glycation end-products. Food Funct 2(6):289–301PubMedCrossRefGoogle Scholar
  103. Peppa M, Vlassar H (2005) Advanced glycation end products and diabetic complications: a general overview. Hormones 4(1):28–37PubMedCrossRefGoogle Scholar
  104. Perera PK, Li Y (2011) Mushrooms as a functional food mediator in preventing and ameliorating diabetes. Functional foods in health and disease, vol 4, pp 161–171Google Scholar
  105. Perez V, Alexander DD, Bailey WH (2013) Air ions and mood outcomes: a review and meta-analysis. BMC Psychiatry 13:29PubMedPubMedCentralCrossRefGoogle Scholar
  106. Pham-Huy LA, He H, Pham-Huy C (2008) Free radicals, antioxidants in disease and health. Int J Biomed Sci 4(2):89–96PubMedPubMedCentralGoogle Scholar
  107. Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 30(1):11–26PubMedCrossRefGoogle Scholar
  108. Rahbar S, Figarola JL (2003) Novel inhibitors of advanced glycation endproducts. Arch Biochem Biophys 419(1):63–79PubMedCrossRefGoogle Scholar
  109. Rahman K (2007) Studies on free radicals, antioxidants, and co-factors. Clin Interv Aging 2(2):219–236PubMedPubMedCentralGoogle Scholar
  110. Rahman T, Hosen I, Towhidul Islam MM, Shekhar HU (2012) Oxidative stress and human health. Adv Biosci Biotechnol 3:997–1019CrossRefGoogle Scholar
  111. Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24(5):981–990PubMedPubMedCentralCrossRefGoogle Scholar
  112. Reiter RJ, Tan D, Osuna C, Gitto E (2000) Actions of melatonin in the reduction of oxidative stress: a review. J Biomed Sci 7(6):444–458PubMedCrossRefGoogle Scholar
  113. Rezaeizadeh H, Alizadeh M, Naseri M, Shams Ardakani MR (2009) The traditional Iranian medicine point of view on health and disease. Iran J Publ Health 38.(Suppl.1:169–172Google Scholar
  114. Rodova M, Kim S, Abdul Mottaleb M, Rafiq Islam M (2016) Hepcidin regulation by bone morphogenetic protein signaling and iron homeostasis. J Nutr Food Sci 6:521CrossRefGoogle Scholar
  115. Rondeau P, Singh N, Caillens H, Bourdon E (2008) Oxidative stresses induced by glycated human or bovine serum albumins on human monocytes. Free Radic Biol Med 45(6):799–812PubMedCrossRefGoogle Scholar
  116. Sahin E, Gumuslu S (2007) Stress-dependent induction of protein oxidation, lipid peroxidation and anti-oxidants in peripheral tissues of rats: comparison of three stress models (immobilization, cold and immobilization-cold). Clin Exp Pharmacol Physiol 34(5-6):425–431PubMedCrossRefGoogle Scholar
  117. Samsel A, Seneff S (2013) Glyphosate, pathways to modern diseases II: celiac sprue and gluten intolerance. Interdiscip Toxicol 6(4):159–184PubMedPubMedCentralCrossRefGoogle Scholar
  118. Santer BD, Mears C, Wentz FJ, Taylor KE, Gleckler PJ, Wigley TML et al (2007) Identification of human-induced changes in atmospheric moisture content. Proc Natl Acad Sci U S A 104:15248–15253PubMedPubMedCentralCrossRefGoogle Scholar
  119. Sattarahmady N, Moosavi-Movahedi AA, Ahmad F, Hakimelahi GH, Habibi-Rezaei M, Saboury AA et al (2007) Formation of the molten globule-like state during prolonged glycation of human serum albumin. Biochim Biophys Acta 1770(6):933–942PubMedCrossRefGoogle Scholar
  120. Scott E (2003) Food safety and food borne disease in 21st century homes. Can J Infect Dis 14(5):277–280PubMedPubMedCentralCrossRefGoogle Scholar
  121. Seeram NP, Schulman RN, Heber D (2006) Pomegranates ancient roots to modern medicine. Taylor & Francis, New YorkGoogle Scholar
  122. Sefidbakht Y, Hosseinkhani S, Mortazavi M, Tavakolnia I, Khellat MR, Shakiba-Herfeh M et al (2013) Effects of 940 MHz EMF on luciferase solution: structure, function and dielectric studies. Bioelectromagnetics 34(6):489–498PubMedCrossRefGoogle Scholar
  123. Sefidbakht Y, Moosavi-Movahedi AA, Hosseinkhani S, Khodagholi F, Torkzadeh-Mahani M, Foolad F et al (2014) Effects of 940 MHz EMF on bioluminescence and oxidative response of stable luciferase producing HEK cells. Photochem Photobiol Sci 13(7):1082–1092PubMedCrossRefGoogle Scholar
  124. Selman C, McLaren JS, Himanka MJ, Speakman JR (2000) Effect of long-term cold exposure on antioxidant enzyme activities in a small mammal. Free Radic Biol Med 28(8):1279–1285PubMedCrossRefGoogle Scholar
  125. Semchyshyn HM, Abrat OB, Miedzobrodzki J, Inoue Y, Lushchak VI (2011) Acetate but not propionate induces oxidative stress in bakers’ yeast Saccharomyces cerevisiae. Redox Rep 16(1):15–23PubMedCrossRefGoogle Scholar
  126. Siegel S (2008) Learning and the wisdom of the body. Learn Behav 36(3):242–252PubMedCrossRefGoogle Scholar
  127. Simic MG, Taylor KA, Ward JF, Von Sonntag C (1988) Oxygen radicals in biology and medicine. Plenum Press, New YorkCrossRefGoogle Scholar
  128. Singh KK (2006) In: Starkov A, Wallace KB (eds) Oxidative stress, disease and cancer: Yin and Yang of mitochondrial ROS. Roswell Park Cancer Institute, New YorkCrossRefGoogle Scholar
  129. Singh R, Barden A, Mori T, Beilin L (2001) Advanced glycation end-products: a review. Diabetologia 44(2):129–146PubMedCrossRefGoogle Scholar
  130. Singh VP, Bali A, Singh N, Jaggi AS (2014) Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol 18(1):1–14PubMedPubMedCentralCrossRefGoogle Scholar
  131. Smith HR, Comella CL, Hogl B (2008) Sleep medicine, 1st edn. Cambridge University Press, New YorkCrossRefGoogle Scholar
  132. Spiegel K, Leproult R, Van Cauter E (1999) Impact of sleep debt on metabolic and endocrine function. Lancet 23:1435–1439. 1999;354(9188):1435–9CrossRefGoogle Scholar
  133. Surai PF (2002) Natural antioxidants in avian nutrition and reproduction, vol 1. Nottingham University Press, NottinghamGoogle Scholar
  134. Szent-Györgyi A (1976) Electronic biology and cancer. Marcel Dekker Inc., New YorkGoogle Scholar
  135. Taghavi F, Moosavi-Movahedi AA, Bohlooli M, Hadi Alijanvand H, Salami M, Maghami P et al (2013) Potassium sorbate as an AGE activator for human serum albumin in the presence and absence of glucose. Int J Biol Macromol 62:146–154PubMedCrossRefGoogle Scholar
  136. Taghavi F, Moosavi-Movahedi AA, Bohlooli M, Habibi-Rezaei M, Hadi Alijanvand H, Amanlou M et al (2014) Energetic domains and conformational analysis of human serum albumin upon co-incubation with sodium benzoate and glucose. J Biomol Struct Dyn 32(3):438–447PubMedCrossRefGoogle Scholar
  137. Taghavi F, Habibi-Rezaei M, Bohlooli M, Saboury AA, Moosavi-Movahedi AA (2016a) The comparative study of potassium sorbate and sodium benzoate upon treated with human serum albumin concerning Maillard reaction and amyloid formation. J Int Soc Antioxid 3:1–4Google Scholar
  138. Taghavi F, Habibi-Rezaei M, Bohlooli M, Farhadi M, Goodarzi M, Movaghati S et al (2016b) Anti-amyloidogenic effects of ellagic acid on human serum albumin fibril formation induced by potassium sorbate and glucose. J Mol Recognit 29(12):611–618PubMedCrossRefGoogle Scholar
  139. Taghavi F, Habibi-Rezaei M, Amani M, Saboury AA, Moosavi-Movahedi AA (2017) The status of glycation in protein aggregation. Int J Biol Macromol 100:67–74PubMedCrossRefGoogle Scholar
  140. Takeuchi M, Sakasai-Sakai A, Takata T, Ueda T, Takino J, Tsutsumi M et al (2015) Serum levels of toxic AGEs (TAGE) may be a promising novel biomarker in development and progression of NASH. Med Hypotheses 84(5):490–493PubMedCrossRefGoogle Scholar
  141. Terzi M, Ozberk B, Deniz OG, Kaplan S (2016) The role of electromagnetic fields in neurological disorders. J Chem Neuroanat 75(Pt B):77–84PubMedCrossRefGoogle Scholar
  142. Thanan R, Oikawa S, Hiraku Y, Ohnishi S, Ma N, Pinlaor S et al (2014) Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int J Mol Sci 16(1):193–217PubMedPubMedCentralCrossRefGoogle Scholar
  143. Thornalley P, Wolff S, Crabbe J, Stern A (1984) The autoxidation of glyceraldehyde and other simple monosaccharides under physiological conditions catalysed by buffer ions. Biochim Biophys Acta 797(2):276–287PubMedCrossRefGoogle Scholar
  144. Thornalley PJ, Langborg A, Minhas HS (1999) Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J 344:109–116PubMedPubMedCentralCrossRefGoogle Scholar
  145. Torday JS (2015) Homeostasis as the mechanism of evolution. Biology 4(3):573–590PubMedPubMedCentralCrossRefGoogle Scholar
  146. Torday JS, Rehan VK (2009) The evolution of cell communication: the road not taken. Cell Commun Insights 2:17–25PubMedPubMedCentralCrossRefGoogle Scholar
  147. Tripathi BK, Srivastava AK (2006) Diabetes mellitus: complications and therapeutics. Med Sci Monit 12(7):RA130–RA147PubMedGoogle Scholar
  148. Turk Z (2010) Glycotoxin, carbonyl stress and relevance to diabetes and its complications. Physiol Res 59(2):147–156PubMedGoogle Scholar
  149. Valipour M, Maghami P, Habibi-Rezaei M, Sadeghpour M, Khademian MA, Mosavi K et al (2015) Interaction of insulin with methyl tert-butyl ether promotes molten globule-like state and production of reactive oxygen species. Int J Biol Macromol 80:610–614PubMedCrossRefGoogle Scholar
  150. Valipour M, Maghami P, Habibi-Rezaei M, Sadeghpour M, Khademian MA, Mosavi K et al (2017) Counteraction of the deleterious effects of reactive oxygen species on hemoglobin structure and function by ellagic acid. J Lumin 182:1–7CrossRefGoogle Scholar
  151. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84PubMedPubMedCentralCrossRefGoogle Scholar
  152. Vallyathan V, Shi XL, Dalal NS, Irr W, Castranova V (1988) Generation of free radicals from freshly fractured silica dust: potential role in acute silica-induced lung injury. Am Rev Respir Dis 138(5):1213–1219PubMedCrossRefGoogle Scholar
  153. Vander AJ, Luciano D, Sherman J (2001) Human physiology: the mechanisms of body function, 8th edn. McGraw-Hill High Education, Boston, MAGoogle Scholar
  154. Vendemiale G, Grattagliano I, Altomare E (1999) An update on the role of free radicals and antioxidant defense in human disease. Int J Clin Lab Res 29(2):49–55PubMedCrossRefPubMedCentralGoogle Scholar
  155. Wheeler ML, Dunbar SA, Jaacks LM, Karmally W, Mayer-Davis EJ, Wylie-Rosett J, Yancy WS Jr (2012) Macronutrients, food groups, and eating patterns in the management of diabetes. Diabetes Care 35(2):434–445PubMedPubMedCentralCrossRefGoogle Scholar
  156. Wigley TML, Jaumann PJ, Santer BD, Taylor KE (1998) Relative detectability of greenhouse-gas and aerosol climate change signals. Clim Dyn 14:781–790CrossRefGoogle Scholar
  157. World Health Organization (2002) Traditional medicine strategy 2002-2005. WHO, Geneva, p 74Google Scholar
  158. World Health Organization (2011) Global status report on noncommunicable diseases 2010. WHO, Italy, p 176Google Scholar
  159. Wu D, Zhai Q, Shi X (2006) Oxidant stress, inflammation and genetics: alcohol-induced oxidative stress and cell responses. J Gastroenterol Hepatol 21:S26–S29PubMedCrossRefPubMedCentralGoogle Scholar
  160. Wu CH, Huang SM, Lin JA, Yen GC (2011) Inhibition of advanced glycation end products formation by foodstuffs. Food Funct 2(5):224–234PubMedCrossRefPubMedCentralGoogle Scholar
  161. Yach D, Khan M, Bradley D, Hargrove R, Kehoe S, Mensah G (2010) The role and challenges of the food industry in addressing chronic disease. Glob Health 6:10CrossRefGoogle Scholar
  162. Yadav H, Jain S, Bissi L, Marotta F (2016) Gut microbiome derived metabolites to regulate energy homeostasis: how microbiome talks to host. Metabolomics 6:e150Google Scholar
  163. Yamagishi S, Matsui T (2010) Advanced glycation end products, oxidative stress and diabetic nephropathy. Oxidative Med Cell Longev 3(2):101–108CrossRefGoogle Scholar
  164. Yamagishi S, Takeuchi M, Inagaki Y, Nakamura K, Imaizumi T (2003) Role of advanced glycation end products (AGEs) and their receptor (RAGE) in the pathogenesis of diabetic microangiopathy. Int J Clin Pharmacol Res 23(4):129–134PubMedPubMedCentralGoogle Scholar
  165. Yamagishi S, Nakamura K, Imaizumi T (2005) Advanced glycation end products (AGEs) and diabetic vascular complications. Curr Diabetes Rev 1(1):93–106PubMedCrossRefGoogle Scholar
  166. Yanga W, Omayeb ST (2009) Air pollutants, oxidative stress and human health. Mutat Res 674:45–54. 2009;674(1–2):45–54CrossRefGoogle Scholar
  167. Yim E, Baquerizo Nole KL, Tosti A (2014) Contact dermatitis caused by preservatives. Dermatitis 25(5):215–231PubMedCrossRefGoogle Scholar
  168. Yuan H, Ma Q, Ye L, Piao G (2016) The traditional medicine and modern medicine from natural products. Molecules 21(5):E559PubMedCrossRefGoogle Scholar
  169. Zarfeshany A, Asgary S, Javanmard SH (2014) Potent health effects of pomegranate. Adv Biomed Res 3:100PubMedPubMedCentralCrossRefGoogle Scholar
  170. Zengin N, Yüzbaşıoğlu D, Unal F, Yılmaz S, Aksoy H (2011) The evaluation of the genotoxicity of two food preservatives: sodium benzoate and potassium benzoate. Food Chem Toxicol 49(4):763–769PubMedCrossRefGoogle Scholar
  171. Zhang L, Chen B, Tang L (2012) Metabolic memory: mechanisms and implications for diabetic retinopathy. Diabetes Res Clin Pract 96(3):286–293PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Biochemistry and Biophysics, University of TehranTehranIran
  2. 2.Faculty of Biological ScienceTarbiat Modares UniversityTehranIran

Personalised recommendations