Skip to main content

A Mathematical Model and a Matheuristic for In-Plant Milk-Run Systems Design and Application in White Goods Industry

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Management and Industrial Engineering ((LNMIE))

Abstract

Effective material distribution is a vital issue to maintain the assembly lines’ operations. So, coordination of the material supply to the assembly lines requires a system design that minimizes total material handling, inventory holding costs and prevents parts shortage. This is called the multi-commodity multi-vehicle material supply system design problem. To solve this, first, a Single-Vehicle Milk-run Mathematical Model is proposed. Then, a Matheuristic that iteratively employs the proposed model is developed to design a multi-vehicle in-plant milk-run system. The proposed methodology is validated by designing the milk-run system of a real washing machine assembly plant.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aghezzaf, E. H., Zhong, Y., Raa, B., & Mateo, M. (2012). Analysis of the single-vehicle cyclic inventory routing problem. International Journal of Systems Science, 43(11), 2040–2049.

    Article  MathSciNet  Google Scholar 

  • Alnahhal, M., & Noche, B. (2015). Dynamic material flow control in mixed model assembly lines. Computers & Industrial Engineering, 85, 110–119.

    Article  Google Scholar 

  • Battini, D., Faccio, M., Persona, A., & Sgarbossa, F. (2009). Design of the optimal feeding policy in an assembly system. International Journal of Production Economics, 121(1), 233–254.

    Article  Google Scholar 

  • Battini, D., Boysen, N., & Emde, S. (2013). Just-in-time supermarkets for part supply in the automobile industry. Journal of Management Control, 24(2), 209–217.

    Article  Google Scholar 

  • Boysen, N., Emde, S., Hoeck, M., & Kauderer, M. (2015). Part logistics in the automotive industry: Decision problems, literature review and research agenda. European Journal of Operational Research, 2421, 107–120.

    Article  MathSciNet  Google Scholar 

  • Caputo, A. C., & Pelagagge, P. M. (2011). A methodology for selecting assembly systems feeding policy. Industrial Management & Data Systems, 111(1), 84–112.

    Article  Google Scholar 

  • Caputo, A. C., Pelagagge, P. M., & Salini, P. (2015). Planning models for continuous supply of parts in assembly systems. Assembly Automation, 35(1), 35–46.

    Article  Google Scholar 

  • Emde, S., & Boysen, N. (2012). Optimally routing and scheduling tow trains for JIT-supply of mixed-model assembly lines. European Journal of Operational Research, 217, 287–299.

    MathSciNet  MATH  Google Scholar 

  • Emde, S., & Gendreau, M. (2017). Scheduling in-house transport vehicles to feed parts to automotive assembly lines. European Journal of Operational Research, 260(1), 255–267.

    Article  MathSciNet  Google Scholar 

  • Fathi, M., Rodríguez, V., Fontes, D. B. M. M., & Alvarez, M. J. (2015). A modified particle swarm optimization algorithm to solve the part feeding problem at assembly lines. International Journal of Production Research, 54(3), 878–893.

    Article  Google Scholar 

  • Gallego, G., & Simchi-Levi, D. (1990). On the effectiveness of direct shipping strategy for one warehouse multi-retailer systems. Management Science, 36, 240–243.

    Article  Google Scholar 

  • Golz, J., Gujjula, R., Günther, H. O., & Rinderer, S. (2012). Part feeding at high-variant mixed-model assembly lines. Flexible Services and Manufacturing Journal, 24, 119–141.

    Article  Google Scholar 

  • Karadayi Usta, S., Oksuz, M. K., & Durmusoglu, M. B. (2017). Design methodology for a hybrid part feeding system in lean-based assembly lines. Assembly Automation, 37(1), 84–102.

    Article  Google Scholar 

  • Kilic, H. S., & Durmusoglu, M. B. (2015). Advances in assembly line parts feeding policies: A literature review. Assembly Automation, 35(1), 57–68.

    Article  Google Scholar 

  • Kilic, H. S., Durmusoglu, M. B., & Baskak, M. (2012). Classification and modeling for in-plant milk-run distribution systems. International Journal of Advanced Manufacturing Technology, 62(9–12), 1135–1146.

    Article  Google Scholar 

  • Korytkowski, P., & Karkoszka, R. (2016). Simulation-based efficiency analysis of an in-plant milk-run operator under disturbances. The International Journal of Advanced Manufacturing Technology, 82(5–8), 827–837.

    Article  Google Scholar 

  • Limère, V., Landeghem, H. V., Goetschalckx, M., Aghezzaf, E. H., & McGinnis, L. F. (2012). Optimising part feeding in the automotive assembly industry: Deciding between kitting and line stocking. International Journal of Production Research, 50(15), 4046–4060.

    Article  Google Scholar 

  • Sali, M., & Sahin, E. (2016). Line feeding optimization for just in time assembly lines: An application to the automotive industry. International Journal of Production Economics, 174, 54–67.

    Article  Google Scholar 

  • Satoglu, S. I., & Sahin, I. E. (2013). Design of a just-in-time periodic material supply system for the assembly lines and an application in electronics industry. International Journal of Advanced Manufacturing Technology, 65, 319–332.

    Article  Google Scholar 

  • Satoglu, S. I., & Sipahioglu, A. (2018). An assignment based modelling approach for the inventory routing problem of material supply systems of the assembly lines. Sigma Journal of Engineering and Natural Sciences, 36(1), 161–177.

    Google Scholar 

  • Satoglu, S. I., & Ucan, K. (2015, March). Redesigning the material supply system of the automotive suppliers based on lean principles and an application. In 2015 International Conference on Industrial Engineering and Operations Management (IEOM) (pp. 1–6). IEEE.

    Google Scholar 

  • Vaidyanathan, B. S, Matson, J. O., Miller, D. M., & Matsona, J. E. (1999). A capacitated vehicle routing problem for just-in-time delivery. IIE Transactions, 31, 1083–1092.

    Google Scholar 

  • Volling, T., Grunewald, M., & Spengler, T. S. (2013). An integrated inventory-transportation system with periodic pick-ups and leveled replenishment. German Academic Association for Business Research (VHB), 6(2), 173–194.

    Google Scholar 

  • Zammori, F., Braglia, M., & Castellano, D. (2015). Just in time parts feeding policies for paced assembly lines: Possible solutions for highly constrained layouts. International Transactions in Operational Research, 23(4), 691–724.

    Article  MathSciNet  Google Scholar 

  • Zhou, B., & Peng, T. (2017). Scheduling the in-house logistics distribution for automotive assembly lines with just-in-time principles. Assembly Automation, 37(1), 51–63.

    Article  Google Scholar 

Download references

Acknowledgements

This study has been financially supported by the Turkish National Science Foundation (TUBITAK), through the 215M143 research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sule Itir Satoglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buyukozkan, K., Bal, A., Oksuz, M.K., Kapukaya, E.N., Satoglu, S.I. (2019). A Mathematical Model and a Matheuristic for In-Plant Milk-Run Systems Design and Application in White Goods Industry. In: Calisir, F., Cevikcan, E., Camgoz Akdag, H. (eds) Industrial Engineering in the Big Data Era. Lecture Notes in Management and Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-03317-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03317-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03316-3

  • Online ISBN: 978-3-030-03317-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics