Skip to main content

An Algorithm for Computing the True Discrete Fractional Fourier Transform

  • Conference paper
  • First Online:
Advances in Soft and Hard Computing (ACS 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 889))

Included in the following conference series:

Abstract

This paper proposes an algorithm for computing the discrete fractional Fourier transform. This algorithm takes advantages of a special structure of the discrete fractional Fourier transformation matrix. This structure allows to reduce the number of arithmetic operations required to calculate the discrete fractional Fourier transform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wiener, N.: Hermitian polynomials and Fourier analysis. J. Math. Phys. 8, 70–73 (1929)

    Article  Google Scholar 

  2. Namias, V.: The fractional order Fourier transform and its application to quantum mechanics. J. Inst. Appl. Math. 25, 241–265 (1980)

    Article  MathSciNet  Google Scholar 

  3. Ozaktas, H.M., Ankan, O., Kutay, M.A., Bozdagi, G.: Digital computation of the fractional Fourier transform. IEEE Trans. Signal Process. 44(9), 2141–2150 (1996). https://doi.org/10.1109/78.536672

    Article  Google Scholar 

  4. Santhanam, B., McClellan, J.H.: Discrete rotational Fourier transform. IEEE Trans. Signal Process. 44(4), 994–998 (1996). https://doi.org/10.1109/78.492554

    Article  Google Scholar 

  5. Pei, S.-C., Yeh, M.-H.: Discrete fractional Fourier transform. In: Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 536–539 (1996)

    Google Scholar 

  6. Pei, S.-C., Tseng, C.-C., Yeh, M.-H., Shyu, J.-J.: Discrete fractional Hartley and Fourier transforms. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 45(6), 665–675 (1998). https://doi.org/10.1109/82.686685

    Article  MATH  Google Scholar 

  7. Pei, S.-C., Yeh, M.-H.: Discrete fractional Hadamard transform. In: Proceedings of the IEEE International Symposium on Circuits and Systems, vol. 3, pp. 179–182 (1999). https://doi.org/10.1109/ISCAS.1999.778814

  8. Pei, S.-C., Yeh, M.-H.: Discrete fractional Hilbert transform. IEEE Trans. Circuits Syst. II Analog. Digit. Signal Process. 47(11), 1307–1311 (2000). https://doi.org/10.1109/82.885138

    Article  Google Scholar 

  9. Pei, S.-C., Yeh, M.H.: The discrete fractional cosine and sine transforms. IEEE Trans. Signal Process. 49(6), 1198–1207 (2001). https://doi.org/10.1109/78.923302

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu, Z., Zhao, H., Liu, S.: A discrete fractional random transform. Opt. Commun. 255(4–6), 357–365 (2005). https://doi.org/10.1016/j.optcom.2005.06.031

    Article  Google Scholar 

  11. Yetik, I.Ş., Kutay, M.A., Ozaktas, H.M.: Image representation and compression with the fractional Fourier transform. Opt. Commun. 197, 275–278 (2001). https://doi.org/10.1016/S0030-4018(01)01462-6

    Article  Google Scholar 

  12. Djurović, I., Stanković, S., Pitas, I.: Digital watermarking in the fractional Fourier transformation domain. J. Netw. Comput. Appl. 24(2), 167–173 (2001). https://doi.org/10.1006/jnca.2000.0128

    Article  MATH  Google Scholar 

  13. Hennelly, B., Sheridan, J.T.: Fractional Fourier transform-based image encryption: phase retrieval algorithm. Opt. Commun. 226, 61–80 (2003). https://doi.org/10.1016/j.optcom.2003.08.030

    Article  Google Scholar 

  14. Jindal, N., Singh, K.: Image and video processing using discrete fractional transforms. Signal Image Video Process. 8(8), 1543–1553 (2014). https://doi.org/10.1007/s11760-012-0391-4

    Article  Google Scholar 

  15. Tao, R., Liang, G., Zhao, X.: An efficient FPGA-based implementation of fractional Fourier transform algorithm. J. Signal Process. Syst. 60(1), 47–58 (2010). https://doi.org/10.1007/s11265-009-0401-0

    Article  Google Scholar 

  16. Cariow, A., Majorkowska-Mech, D.: Fast algorithm for discrete fractional Hadamard transform. Numer. Algorithms 68(3), 585–600 (2015). https://doi.org/10.1007/s11075-014-9862-8

    Article  MathSciNet  MATH  Google Scholar 

  17. Bultheel, A., Martinez-Sulbaran, H.E.: Computation of the fractional Fourier transform. Appl. Comput. Harmon. Anal. 16(3), 182–202 (2004)

    Article  MathSciNet  Google Scholar 

  18. Irfan, M., Zheng, L., Shahzad, H.: Review of computing algorithms for discrete fractional Fourier transform. Res. J. Appl. Sci. Eng. Technol. 6(11), 1911–1919 (2013)

    Google Scholar 

  19. Pei, S.-C., Yeh, M.-H.: Improved discrete fractional Fourier transform. Opt. Lett. 22(14), 1047–1049 (1997). https://doi.org/10.1364/OL.22.001047

    Article  Google Scholar 

  20. Candan, Ç.C., Kutay, M.A., Ozaktas, H.M.: The discrete fractional Fourier transform. IEEE Trans. Signal Process. 48(5), 1329–1337 (2000). https://doi.org/10.1109/78.839980

    Article  MathSciNet  MATH  Google Scholar 

  21. Majorkowska-Mech, D., Cariow, A.: A low-complexity approach to computation of the discrete fractional Fourier transform. Circuits Syst. Signal Process. 36(10), 4118–4144 (2017). https://doi.org/10.1007/s00034-017-0503-z

    Article  MATH  Google Scholar 

  22. Halmos, P.R.: Finite Dimensional Vector Spaces. Princeton University Press, Princeton (1947)

    Google Scholar 

  23. McClellan, J.H., Parks, T.W.: Eigenvalue and eigenvector decomposition of the discrete Fourier transform. IEEE Trans. Audio Electroacoust. 20(1), 66–74 (1972). https://doi.org/10.1109/TAU.1972.1162342

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorota Majorkowska-Mech .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Majorkowska-Mech, D., Cariow, A. (2019). An Algorithm for Computing the True Discrete Fractional Fourier Transform. In: Pejaś, J., El Fray, I., Hyla, T., Kacprzyk, J. (eds) Advances in Soft and Hard Computing. ACS 2018. Advances in Intelligent Systems and Computing, vol 889. Springer, Cham. https://doi.org/10.1007/978-3-030-03314-9_36

Download citation

Publish with us

Policies and ethics