Advertisement

60 GHz LNA Design with Inductive Source Degeneration in 65 nm CMOS Technology

  • Rajendra ChikkanagoudaEmail author
  • P. Cyril Prasanna Raj
Conference paper
Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT, volume 26)

Abstract

This paper presents source degenerated cascode 60 GHz Low Noise Amplifier (LNA) is modelled in ADS and its performance is measured by computing Noise Figure (NF) and gain from simulation waveforms. Parameters such as LNA linearity and stability is determined and designed to be within permissible limits. The designed LNA is optimized for its area with 30% reduction. The measured result of the designed LNA shows 19.48 dB gain, 4.7 dB NF and IIP3 of –10 dBm. The Figure of Merit (FoM) characterized as an element of the NF and IIP3 is 17, which is the best outcome among past LNAs.

Keywords

60 GHz LNA 65 nm ADS CMOS technology Satellite communication 

References

  1. 1.
    Byeon, C.W., Yoon, C.H., Park, C.S.: A 67-mW 10.7-Gb/s 60-GHz OOK CMOS transceiver for short-range wireless communications. IEEE Trans. Microw. Theory Techn. 61(9), 3391–3401 (2013)CrossRefGoogle Scholar
  2. 2.
    Okada, K., et al.: A full 4-channel 6.3 Gb/s 60 GHz direct-conversion transceiver with low-power analog and digital baseband circuitry. In: IEEE ISSCC Digest of Technical Papers, pp. 218–220 (2012)Google Scholar
  3. 3.
    Razavi, B.: Design of millimeter-wave CMOS radios: a tutorial. IEEE Trans. Circuits Syst. I, Reg. Papers 56(1), 4–16 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Valdes-Garcia, A., et al.: A fully integrated 16-element phased-array transmitter in SiGe BiCMOS for 60-GHz communications. IEEE J. Solid-State Circuits 45(12), 2757–2773 (2010)CrossRefGoogle Scholar
  5. 5.
    Yao, T., et al.: Algorithmic design of CMOS LNAs and PAs for 60-GHz radio. IEEE J. Solid-State Circuits 42(5), 1044–1057 (2007)CrossRefGoogle Scholar
  6. 6.
    Gordon, M.Q., Yao, T., Voinigescu, S.P.: 65-GHz receiver in SiGeBiCMOS using monolithic inductors and transformers. In: Si Monolithic Integrated Circuits in RF Systems, pp. 265–268 (2007)Google Scholar
  7. 7.
    Floyd, B.A., et al.: SiGe bipolar transceiver circuits operating at 60 GHz. IEEE J. Solid State Circuits 40(1), 156–167 (2005)CrossRefGoogle Scholar
  8. 8.
    Alldred, D., Cousins, B., Voinigescu, S.P., Rogers, E.S.: A 1.2 V, 60-GHz radio receiver with on-chip transformers and inductors in 90-nm CMOS. In: IEEE Compound Semiconductor Integrated Circuit Symposium, pp. 51–54 (2006)Google Scholar
  9. 9.
    Doan, C.H., Emami, S., Niknejad, A.M., Brodersen, R.W.: Millimeter-wave CMOS design. IEEE J. Solid-State Circuits 40(1), 144–155 (2005)CrossRefGoogle Scholar
  10. 10.
    Razavi, B.: A 60-GHz direct-conversion CMOS receiver. In: IEEE International Solid-State Circuits Conference. Digest Technical Papers, vol. 1, pp. 400–606 (2005)Google Scholar
  11. 11.
    Heydari, B., Bohsali, M., Adabi, E., Niknejad, A.M.: Low-power mm-wave components up to 104 GHz in 90 nm CMOS. In: IEEE International Solid-State Circuits Conference (ISSCC) Digest Technical Papers, pp. 200–597 (2007)Google Scholar
  12. 12.
    Chikkanagouda, R., Cyril Prasanna Raj, P.: Design of cascode LNA with inductive source degeneration for 60 GHz applications. In: International Conference on Materials, Applied Physics and Engineering (ICMAE), Indore (2018)Google Scholar
  13. 13.
    Tsai, M.-H., et al.: Design of 60-GHz low-noise amplifiers with low NF and robust ESD protection in 65-nm CMOS. IEEE Trans. Microw. Theory Tech. 61(1), 553–561 (2013)CrossRefGoogle Scholar
  14. 14.
    Hsieh, H.-H., et al.: 60 GHz High-Gain Low-Noise Amplifiers with a Common-Gate Inductive Feedback in 65 nm CMOS. In: IEEE Radio Frequency Integrated Circuits Symposium, pp. 1–4 (2011)Google Scholar
  15. 15.
    Fanaro, M., Olakede, S.S., Sinha, S.: Investigation of 60 GHz LNA with estimated S11 values based on mathematical model and numerical solution. Rom. J. Inf. Sci. Technol. 19(3), 239–254 (2016)Google Scholar
  16. 16.
    Liang, C.K., Razavi, B.: Systematic transistor and inductor modeling for millimeter-wave design. IEEE J. Solid-State Circuits 44(2), 450–457 (2009)CrossRefGoogle Scholar
  17. 17.
    Dickson, T.O., et al.: The invariance of characteristic current densities in nanoscale MOSFETs and its impact on algorithmic design methodologies and design porting of Si(Ge) (Bi)CMOS high-speed building blocks. IEEE J. Solid-State Circuits 41(1), 1830–1845 (2006)CrossRefGoogle Scholar
  18. 18.
    Niknejad, A.M.: MOSFET LNA Design. University of California, Berkeley (2005). http://rfic.eecs.berkeley.edu/~niknejad/ee142_fa05lects/pdf/lect14.pdf
  19. 19.
    Voinigescu, S.P., et al.: RF and millimeter-wave IC design in the nano-(Bi)CMOS era. Si-Based Semiconductor Components for Radio-Frequency Integrated Circuits (RFIC) (2006)Google Scholar
  20. 20.
    Predictive Technology Model, Latest Models. http://ptm.asu.edu/modelcard/2006/65nm_bulk.pm
  21. 21.
    International Technology Roadmap for Semiconductors (ITRS), 2005 Edn. (2005). https://www.semiconductors.org/clientuploads/Research_Technology/ITRS/2005/1_Executive%20Summary.pdf

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.M S Engineering College, VTUBengaluruIndia
  2. 2.R & D CentreM S Engineering College, VTUBengaluruIndia

Personalised recommendations