Skip to main content

Noninfectious Uveitis: Immunomodulatory Agents and Biologicals

  • Chapter
  • First Online:
Posterior Uveitis

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • 531 Accesses

Abstract

While corticosteroids are the typical first-line systemic medication used for immediate control of noninfectious uveitis, chronic or frequently recurrent disease, significant side effects related to corticosteroids, or intolerability warrant advancement of therapy to immunomodulatory therapy, including the broad classes of antimetabolites, calcineurin inhibitors (T-cell inhibitors), alkylating agents, and, more recently, biologics. While antimetabolites, calcineurin inhibitors, and alkylating agents have a long history of use in the setting of noninfectious uveitis, in the United States, they have all been used off-label. The only US Food and Drug Administration (FDA)-approved therapy for noninfectious uveitis (intermediate, posterior, or panuveitis) outside of corticosteroids is a biologic, adalimumab. Nevertheless, antimetabolites are most frequently used for corticosteroid-sparing control of uveitis. While calcineurin inhibitors and alkylating agents are still used, some agents, in particular, the alkylating agents, are reserved for extremely aggressive and sight-threatening ocular inflammatory diseases. The advent of biologics with targets for specific inflammatory pathway molecules signals a new era in managing uveitis more precisely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rathinam SR, Babu M, Thundikandy R, et al. A randomized clinical trial comparing methotrexate and mycophenolate mofetil for noninfectious uveitis. Ophthalmology. 2014;121(10):1863–70.

    PubMed  PubMed Central  Google Scholar 

  2. Esterberg E, Acharya NR. Corticosteroid-sparing therapy: practice patterns among uveitis specialists. J Ophthalmic Inflamm Infect. 2012;2(1):21–8.

    CAS  PubMed  Google Scholar 

  3. Elion GB, Hitchings GH, Vanderwerff H. Antagonists of nucleic acid derivatives. VI. Purines. J Biol Chem. 1951;192(2):505–18.

    CAS  PubMed  Google Scholar 

  4. Elion GB. Nobel Lecture. The purine path to chemotherapy. Biosci Rep. 1989;9(5):509–29.

    CAS  PubMed  Google Scholar 

  5. Hoffmann M, Rychlewski J, Chrzanowska M, Hermann T. Mechanism of activation of an immunosuppressive drug: azathioprine. Quantum chemical study on the reaction of azathioprine with cysteine. J Am Chem Soc. 2001;123(26):6404–9.

    CAS  PubMed  Google Scholar 

  6. Liu H, Ding L, Zhang F, et al. The impact of glutathione S-transferase genotype and phenotype on the adverse drug reactions to azathioprine in patients with inflammatory bowel diseases. J Pharmacol Sci. 2015;129(2):95–100.

    CAS  PubMed  Google Scholar 

  7. Greenwood AJ, Stanford MR, Graham EM. The role of azathioprine in the management of retinal vasculitis. Eye (London, England). 1998;12(Pt 5):783–8.

    Google Scholar 

  8. Pasadhika S, Kempen JH, Newcomb CW, et al. Azathioprine for ocular inflammatory diseases. Am J Ophthalmol. 2009;148(4):500–509.e502.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Jabs DA, Nussenblatt RB, Rosenbaum JT. Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. Am J Ophthalmol. 2005;140(3):509–16.

    PubMed  Google Scholar 

  10. Schatz CS, Uzel JL, Leininger L, Danner S, Terzic J, Fischbach M. Immunosuppressants used in a steroid-sparing strategy for childhood uveitis. J Pediatr Ophthalmol Strabismus. 2007;44(1):28–34.

    PubMed  Google Scholar 

  11. Arellanes-Garcia L, Navarro-Lopez L, Recillas-Gispert C. Pars planitis in the Mexican Mestizo population: ocular findings, treatment, and visual outcome. Ocul Immunol Inflamm. 2003;11(1):53–60.

    PubMed  Google Scholar 

  12. Mathews JD, Crawford BA, Bignell JL, Mackay IR. Azathioprine in active chronic iridocyclitis. A double-blind controlled trial. Br J Ophthalmol. 1969;53(5):327–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Yazici H, Pazarli H, Barnes CG, et al. A controlled trial of azathioprine in Behcet’s syndrome. N Engl J Med. 1990;322(5):281–5.

    CAS  PubMed  Google Scholar 

  14. Hamuryudan V, Ozyazgan Y, Hizli N, et al. Azathioprine in Behcet’s syndrome: effects on long-term prognosis. Arthritis Rheum. 1997;40(4):769–74.

    CAS  PubMed  Google Scholar 

  15. Andrasch RH, Pirofsky B, Burns RP. Immunosuppressive therapy for severe chronic uveitis. Arch Ophthalmol (Chicago, Ill.: 1960). 1978;96(2):247–51.

    CAS  Google Scholar 

  16. Cytotoxic drugs in treatment of nonmalignant diseases. Ann Intern Med. 1972;76(4):619–42.

    Google Scholar 

  17. Nielsen OH, Maxwell C, Hendel J. IBD medications during pregnancy and lactation. Nat Rev Gastroenterol Hepatol. 2014;11(2):116–27.

    CAS  PubMed  Google Scholar 

  18. Galor A, Jabs DA, Leder HA, et al. Comparison of antimetabolite drugs as corticosteroid-sparing therapy for noninfectious ocular inflammation. Ophthalmology. 2008;115(10):1826–32.

    PubMed  Google Scholar 

  19. Hooper PL, Kaplan HJ. Triple agent immunosuppression in serpiginous choroiditis. Ophthalmology. 1991;98(6):944–51; discussion 951-942.

    CAS  PubMed  Google Scholar 

  20. Moore CE. Sympathetic ophthalmitis treated with azathioprine. Br J Ophthalmol. 1968;52(9):688–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hakin KN, Pearson RV, Lightman SL. Sympathetic ophthalmia: visual results with modern immunosuppressive therapy. Eye (London, England). 1992;6(Pt 5):453–5.

    Google Scholar 

  22. Hellmund K, Fruhauf A, Seiler T, Naumann GO. Sympathetic ophthalmia 50 years after penetrating injury. A case report. Klin Monbl Augenheilkd. 1998;213(3):182–5.

    CAS  PubMed  Google Scholar 

  23. Sisk RA, Davis JL, Dubovy SR, Smiddy WE. Sympathetic ophthalmia following vitrectomy for endophthalmitis after intravitreal bevacizumab. Ocul Immunol Inflamm. 2008;16(5):236–8.

    PubMed  Google Scholar 

  24. Siemasko KF, Chong AS, Williams JW, Bremer EG, Finnegan A. Regulation of B cell function by the immunosuppressive agent leflunomide. Transplantation. 1996;61(4):635–42.

    CAS  PubMed  Google Scholar 

  25. Manna SK, Aggarwal BB. Immunosuppressive leflunomide metabolite (A77 1726) blocks TNF-dependent nuclear factor-kappa B activation and gene expression. J Immunol (Baltimore, Md.: 1950). 1999;162(4):2095–102.

    CAS  Google Scholar 

  26. Robertson SM, Lang LS. Leflunomide: inhibition of S-antigen induced autoimmune uveitis in Lewis rats. Agents Actions. 1994;42(3–4):167–72.

    CAS  PubMed  Google Scholar 

  27. Fang CB, Zhou DX, Zhan SX, et al. Amelioration of experimental autoimmune uveitis by leflunomide in Lewis rats. PLoS One. 2013;8(4):e62071.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang J, Xie QB, Zhao Y, Liu Y. Flare up of rheumatoid arthritis associated with Vogt-Koyanagi-Harada syndrome treated with leflunomide. Int J Ophthalmol. 2014;7(5):909–11.

    PubMed  PubMed Central  Google Scholar 

  29. Steigerwalt RD Jr, Bacci S, Valesini G. Severe uveitis successfully treated with leflunomide. Retin Cases Brief Rep. 2007;1(1):54–5.

    PubMed  Google Scholar 

  30. Molina C, Modesto C, Martin-Begue N, Arnal C. Leflunomide, a valid and safe drug for the treatment of chronic anterior uveitis associated with juvenile idiopathic arthritis. Clin Rheumatol. 2013;32(11):1673–5.

    PubMed  Google Scholar 

  31. Bichler J, Benseler SM, Krumrey-Langkammerer M, Haas JP, Hugle B. Leflunomide is associated with a higher flare rate compared to methotrexate in the treatment of chronic uveitis in juvenile idiopathic arthritis. Scand J Rheumatol. 2015;44(4):280–3.

    CAS  PubMed  Google Scholar 

  32. Kremer JM, Genovese MC, Cannon GW, et al. Concomitant leflunomide therapy in patients with active rheumatoid arthritis despite stable doses of methotrexate. A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 2002;137(9):726–33.

    CAS  PubMed  Google Scholar 

  33. Fairbanks LD, Ruckemann K, Qiu Y, et al. Methotrexate inhibits the first committed step of purine biosynthesis in mitogen-stimulated human T-lymphocytes: a metabolic basis for efficacy in rheumatoid arthritis? Biochem J. 1999;342(Pt 1):143–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kiely PD, Johnson DM. Infliximab and leflunomide combination therapy in rheumatoid arthritis: an open-label study. Rheumatology (Oxford, England). 2002;41(6):631–7.

    CAS  Google Scholar 

  35. Nurmohamed MT, van Halm VP, Dijkmans BA. Cardiovascular risk profile of antirheumatic agents in patients with osteoarthritis and rheumatoid arthritis. Drugs. 2002;62(11):1599–609.

    CAS  PubMed  Google Scholar 

  36. Erice A. Resistance of human cytomegalovirus to antiviral drugs. Clin Microbiol Rev. 1999;12(2):286–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Andrassy J, Illner WD, Rentsch M, Jaeger G, Jauch KW, Fischereder M. Leflunomide: a treatment option for ganciclovir-resistant cytomegalovirus infection after renal transplantation. NDT Plus. 2009;2(2):149–51.

    PubMed  PubMed Central  Google Scholar 

  38. Chon WJ, Kadambi PV, Xu C, et al. Use of leflunomide in renal transplant recipients with ganciclovir-resistant/refractory cytomegalovirus infection: a case series from the University of Chicago. Case Rep Nephrol Dial. 2015;5(1):96–105.

    PubMed  PubMed Central  Google Scholar 

  39. Verkaik NJ, Hoek RA, van Bergeijk H, et al. Leflunomide as part of the treatment for multidrug-resistant cytomegalovirus disease after lung transplantation: case report and review of the literature. Transpl Infect Dis. 2013;15(6):E243–9.

    CAS  PubMed  Google Scholar 

  40. Waldman WJ, Knight DA, Blinder L, et al. Inhibition of cytomegalovirus in vitro and in vivo by the experimental immunosuppressive agent leflunomide. Intervirology. 1999;42(5–6):412–8.

    CAS  PubMed  Google Scholar 

  41. Heinle RW, Welch AD. Experiments with pteroylglutamic acid and pteroylglutamic acid deficiency in human leukemia. J Clin Invest. 1948;27(4):539.

    CAS  PubMed  Google Scholar 

  42. Cress RH, Deaver NL. Methotrexate in the Management of Severe Psoriasis and Arthritis: report of a case. South Med J. 1964;57:1088–90.

    CAS  PubMed  Google Scholar 

  43. Enderlin M. Experiences with antimetabolite therapy of malignant forms of progressive chronic polyarthritis. Helv Med Acta Suppl. 1966;46:171.

    CAS  PubMed  Google Scholar 

  44. Gross D, Enderlin M, Fehr K. Immunosuppressive therapy of progredient chronic polyarthritis using antimetabolites and cytostatics. Schweiz Med Wochenschr. 1967;97(40):1301–10.

    CAS  PubMed  Google Scholar 

  45. Fosdick WM. Cytotoxic therapy in rheumatoid arthritis. Med Clin North Am. 1968;52(3):747–57.

    CAS  PubMed  Google Scholar 

  46. Wilke WS, Calabrese LH, Scherbel AL. Methotrexate in the treatment of rheumatoid arthritis; pilot study. Cleve Clin Q. 1980;47(4):305–9.

    CAS  PubMed  Google Scholar 

  47. Hall PA, Levison DA. Review: assessment of cell proliferation in histological material. J Clin Pathol. 1990;43(3):184–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Spina D, Leoncini L, Del Vecchio MT, et al. Low versus high cell turnover in diffusely growing non-Hodgkin’s lymphomas. J Pathol. 1995;177(4):335–41.

    CAS  PubMed  Google Scholar 

  49. Day RO, Furst DE, Riel PLCM, van Bresnihan B, editors. Antirheumatic therapy: actions and outcomes: Birhäuser Verlag. ISBN 978-3-7643-7726-7.

    Google Scholar 

  50. Jurgensen CH, Huber BE, Zimmerman TP, Wolberg G. 3-deazaadenosine inhibits leukocyte adhesion and ICAM-1 biosynthesis in tumor necrosis factor-stimulated human endothelial cells. J Immunol (Baltimore, Md.: 1950). 1990;144(2):653–61.

    CAS  Google Scholar 

  51. Jurgensen CH, Wolberg G, Zimmerman TP. Inhibition of neutrophil adherence to endothelial cells by 3-deazaadenosine. Agents Actions. 1989;27(3–4):398–400.

    CAS  PubMed  Google Scholar 

  52. Nesher G, Moore TL. The in vitro effects of methotrexate on peripheral blood mononuclear cells. Modulation by methyl donors and spermidine. Arthritis Rheum. 1990;33(7):954–9.

    CAS  PubMed  Google Scholar 

  53. Yukioka K, Wakitani S, Yukioka M, et al. Polyamine levels in synovial tissues and synovial fluids of patients with rheumatoid arthritis. J Rheumatol. 1992;19(5):689–92.

    CAS  PubMed  Google Scholar 

  54. Morabito L, Montesinos MC, Schreibman DM, et al. Methotrexate and sulfasalazine promote adenosine release by a mechanism that requires ecto-5′-nucleotidase-mediated conversion of adenine nucleotides. J Clin Invest. 1998;101(2):295–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Cronstein BN, Rosenstein ED, Kramer SB, Weissmann G, Hirschhorn R. Adenosine; a physiologic modulator of superoxide anion generation by human neutrophils. Adenosine acts via an A2 receptor on human neutrophils. J Immunol (Baltimore, Md.: 1950). 1985;135(2):1366–71.

    CAS  Google Scholar 

  56. Cronstein BN, Daguma L, Nichols D, Hutchison AJ, Williams M. The adenosine/neutrophil paradox resolved: human neutrophils possess both A1 and A2 receptors that promote chemotaxis and inhibit O2 generation, respectively. J Clin Invest. 1990;85(4):1150–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Jundt JW, Browne BA, Fiocco GP, Steele AD, Mock D. A comparison of low dose methotrexate bioavailability: oral solution, oral tablet, subcutaneous and intramuscular dosing. J Rheumatol. 1993;20(11):1845–9.

    CAS  PubMed  Google Scholar 

  58. Gangaputra S, Newcomb CW, Liesegang TL, et al. Methotrexate for ocular inflammatory diseases. Ophthalmology. 2009;116(11):2188–2198.e2181.

    PubMed  PubMed Central  Google Scholar 

  59. Hemady RK, Baer JC, Foster CS. Immunosuppressive drugs in the management of progressive, corticosteroid-resistant uveitis associated with juvenile rheumatoid arthritis. Int Ophthalmol Clin. 1992;32(1):241–52.

    CAS  PubMed  Google Scholar 

  60. Weiss AH, Wallace CA, Sherry DD. Methotrexate for resistant chronic uveitis in children with juvenile rheumatoid arthritis. J Pediatr. 1998;133(2):266–8.

    CAS  PubMed  Google Scholar 

  61. Foeldvari I, Wierk A. Methotrexate is an effective treatment for chronic uveitis associated with juvenile idiopathic arthritis. J Rheumatol. 2005;32(2):362–5.

    CAS  PubMed  Google Scholar 

  62. Malik AR, Pavesio C. The use of low dose methotrexate in children with chronic anterior and intermediate uveitis. Br J Ophthalmol. 2005;89(7):806–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Heiligenhaus A, Mingels A, Heinz C, Ganser G. Methotrexate for uveitis associated with juvenile idiopathic arthritis: value and requirement for additional anti-inflammatory medication. Eur J Ophthalmol. 2007;17(5):743–8.

    CAS  PubMed  Google Scholar 

  64. Herman RA, Veng-Pedersen P, Hoffman J, Koehnke R, Furst DE. Pharmacokinetics of low-dose methotrexate in rheumatoid arthritis patients. J Pharm Sci. 1989;78(2):165–71.

    CAS  PubMed  Google Scholar 

  65. Prasad S, Tripathi D, Rai MK, Aggarwal S, Mittal B, Agarwal V. Multidrug resistance protein-1 expression, function and polymorphisms in patients with rheumatoid arthritis not responding to methotrexate. Int J Rheum Dis. 2014;17(8):878–86.

    CAS  PubMed  Google Scholar 

  66. Wessels JA, van der Kooij SM, le Cessie S, et al. A clinical pharmacogenetic model to predict the efficacy of methotrexate monotherapy in recent-onset rheumatoid arthritis. Arthritis Rheum. 2007;56(6):1765–75.

    CAS  PubMed  Google Scholar 

  67. Wessels JA, Kooloos WM, De Jonge R, et al. Relationship between genetic variants in the adenosine pathway and outcome of methotrexate treatment in patients with recent-onset rheumatoid arthritis. Arthritis Rheum. 2006;54(9):2830–9.

    CAS  PubMed  Google Scholar 

  68. Sen HN, Chan CC, Byrnes G, Fariss RN, Nussenblatt RB, Buggage RR. Intravitreal methotrexate resistance in a patient with primary intraocular lymphoma. Ocul Immunol Inflamm. 2008;16(1):29–33.

    PubMed  PubMed Central  Google Scholar 

  69. Micsik T, Lorincz A, Gal J, Schwab R, Petak I. MDR-1 and MRP-1 activity in peripheral blood leukocytes of rheumatoid arthritis patients. Diagn Pathol. 2015;10(1):216.

    PubMed  PubMed Central  Google Scholar 

  70. Sotoudehmanesh R, Anvari B, Akhlaghi M, Shahraeeni S, Kolahdoozan S. Methotrexate hepatotoxicity in patients with rheumatoid arthritis. Middle East J Dig Dis. 2010;2(2):104–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Sakthiswary R, Chan GY, Koh ET, Leong KP, Thong BY. Methotrexate-associated nonalcoholic fatty liver disease with transaminitis in rheumatoid arthritis. TheScientificWorldJournal. 2014;2014:823763.

    PubMed  PubMed Central  Google Scholar 

  72. Jakubovic BD, Donovan A, Webster PM, Shear NH. Methotrexate-induced pulmonary toxicity. Can Respir J. 2013;20(3):153–5.

    PubMed  PubMed Central  Google Scholar 

  73. Troeltzsch M, von Blohn G, Kriegelstein S, et al. Oral mucositis in patients receiving low-dose methotrexate therapy for rheumatoid arthritis: report of 2 cases and literature review. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;115(5):e28–33.

    PubMed  Google Scholar 

  74. Morgan SL, Baggott JE, Vaughn WH, et al. Supplementation with folic acid during methotrexate therapy for rheumatoid arthritis. A double-blind, placebo-controlled trial. Ann Intern Med. 1994;121(11):833–41.

    CAS  PubMed  Google Scholar 

  75. Morgan SL, Baggott JE, Vaughn WH, et al. The effect of folic acid supplementation on the toxicity of low-dose methotrexate in patients with rheumatoid arthritis. Arthritis Rheum. 1990;33(1):9–18.

    CAS  PubMed  Google Scholar 

  76. Shea B, Swinden MV, Ghogomu ET, et al. Folic acid and folinic acid for reducing side effects in patients receiving methotrexate for rheumatoid arthritis. J Rheumatol. 2014;41(6):1049–60.

    CAS  PubMed  Google Scholar 

  77. Lee WA, Gu L, Miksztal AR, Chu N, Leung K, Nelson PH. Bioavailability improvement of mycophenolic acid through amino ester derivatization. Pharm Res. 1990;7(2):161–6.

    CAS  PubMed  Google Scholar 

  78. Morris RE, Hoyt EG, Murphy MP, Eugui EM, Allison AC. Mycophenolic acid morpholinoethylester (RS-61443) is a new immunosuppressant that prevents and halts heart allograft rejection by selective inhibition of T- and B-cell purine synthesis. Transplant Proc. 1990;22(4):1659–62.

    CAS  PubMed  Google Scholar 

  79. Platz KP, Sollinger HW, Hullett DA, Eckhoff DE, Eugui EM, Allison AC. RS-61443—a new, potent immunosuppressive agent. Transplantation. 1991;51(1):27–31.

    CAS  PubMed  Google Scholar 

  80. Platz KP, Bechstein WO, Eckhoff DE, Suzuki Y, Sollinger HW. RS-61443 reverses acute allograft rejection in dogs. Surgery. 1991;110(4):736–40; discussion 740-731.

    CAS  PubMed  Google Scholar 

  81. Sollinger HW, Deierhoi MH, Belzer FO, Diethelm AG, Kauffman RS. RS-61443—a phase I clinical trial and pilot rescue study. Transplantation. 1992;53(2):428–32.

    CAS  PubMed  Google Scholar 

  82. Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet. 2007;46(1):13–58.

    CAS  PubMed  Google Scholar 

  83. Siepmann K, Huber M, Stubiger N, Deuter C, Zierhut M. Mycophenolate mofetil is a highly effective and safe immunosuppressive agent for the treatment of uveitis : a retrospective analysis of 106 patients. Graefe’s Arch Clin Exp Ophthalmol. 2006;244(7):788–94.

    CAS  Google Scholar 

  84. Doycheva D, Zierhut M, Blumenstock G, Stuebiger N, Deuter C. Long-term results of therapy with mycophenolate mofetil in chronic non-infectious uveitis. Graefe’s Arch Clin Exp Ophthalmol. 2011;249(8):1235–43.

    CAS  Google Scholar 

  85. Thorne JE, Jabs DA, Qazi FA, Nguyen QD, Kempen JH, Dunn JP. Mycophenolate mofetil therapy for inflammatory eye disease. Ophthalmology. 2005;112(8):1472–7.

    PubMed  Google Scholar 

  86. Cuchacovich M, Solanes F, Perez C, et al. Mycophenolate mofetil therapy in refractory inflammatory eye disease. J Ocul Pharmacol Ther. 2016;32(1):55–61.

    CAS  PubMed  Google Scholar 

  87. Filler G, Hansen M, LeBlanc C, et al. Pharmacokinetics of mycophenolate mofetil for autoimmune disease in children. Pediatr Nephrol (Berlin, Germany). 2003;18(5):445–9.

    Google Scholar 

  88. Doycheva D, Deuter C, Stuebiger N, Biester S, Zierhut M. Mycophenolate mofetil in the treatment of uveitis in children. Br J Ophthalmol. 2007;91(2):180–4.

    CAS  PubMed  Google Scholar 

  89. Sobrin L, Christen W, Foster CS. Mycophenolate mofetil after methotrexate failure or intolerance in the treatment of scleritis and uveitis. Ophthalmology. 2008;115(8):1416–21, 1421.e1411.

    PubMed  Google Scholar 

  90. Bentley R. Mycophenolic Acid: a one hundred year odyssey from antibiotic to immunosuppressant. Chem Rev. 2000;100(10):3801–26.

    CAS  PubMed  Google Scholar 

  91. Doycheva D, Jagle H, Zierhut M, et al. Mycophenolic acid in the treatment of birdshot chorioretinopathy: long-term follow-up. Br J Ophthalmol. 2015;99(1):87–91.

    PubMed  Google Scholar 

  92. Zacharias LC, Damico FM, Kenney MC, et al. In vitro evidence for mycophenolic acid dose-related cytotoxicity in human retinal cells. Retina (Philadelphia, Pa.). 2013;33(10):2155–61.

    CAS  Google Scholar 

  93. Franklin JL, Rosenberg HH. Impaired folic acid absorption in inflammatory bowel disease: effects of salicylazosulfapyridine (Azulfidine). Gastroenterology. 1973;64(4):517–25.

    CAS  PubMed  Google Scholar 

  94. Selhub J, Dhar GJ, Rosenberg IH. Inhibition of folate enzymes by sulfasalazine. J Clin Invest. 1978;61(1):221–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Baum CL, Selhub J, Rosenberg IH. Antifolate actions of sulfasalazine on intact lymphocytes. J Lab Clin Med. 1981;97(6):779–84.

    CAS  PubMed  Google Scholar 

  96. Rhodes JM, Jewell DP. Motility of neutrophils and monocytes in Crohn’s disease and ulcerative colitis. Gut. 1983;24(1):73–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Munoz-Fernandez S, Hidalgo V, Fernandez-Melon J, et al. Sulfasalazine reduces the number of flares of acute anterior uveitis over a one-year period. J Rheumatol. 2003;30(6):1277–9.

    CAS  PubMed  Google Scholar 

  98. Kaklamani VG, Kaklamanis PG. Treatment of Behcet’s disease—an update. Semin Arthritis Rheum. 2001;30(5):299–312.

    CAS  PubMed  Google Scholar 

  99. Arcinue CA, Radwan A, Lebanan MO, Foster CS. Comparison of two different combination immunosuppressive therapies in the treatment of Vogt-Koyonagi-Harada syndrome. Ocul Immunol Inflamm. 2013;21(1):47–52.

    PubMed  Google Scholar 

  100. Silman AJ, Petrie J, Hazleman B, Evans SJ. Lymphoproliferative cancer and other malignancy in patients with rheumatoid arthritis treated with azathioprine: a 20 year follow up study. Ann Rheum Dis. 1988;47(12):988–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Penn I. Cancers complicating organ transplantation. N Engl J Med. 1990;323(25):1767–9.

    CAS  PubMed  Google Scholar 

  102. Kempen JH, Daniel E, Dunn JP, et al. Overall and cancer related mortality among patients with ocular inflammation treated with immunosuppressive drugs: retrospective cohort study. BMJ (Clinical research ed.). 2009;339:b2480.

    Google Scholar 

  103. Nussenblatt RB, Rodrigues MM, Wacker WB, Cevario SJ, Salinas-Carmona MC, Gery I. Cyclosporin a. Inhibition of experimental autoimmune uveitis in Lewis rats. J Clin Invest. 1981;67(4):1228–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Nussenblatt RB, Palestine AG, Rook AH, Scher I, Wacker WB, Gery I. Treatment of intraocular inflammatory disease with cyclosporin a. Lancet (London, England). 1983;2(8344):235–8.

    CAS  Google Scholar 

  105. Kacmaz RO, Kempen JH, Newcomb C, et al. Cyclosporine for ocular inflammatory diseases. Ophthalmology. 2010;117(3):576–84.

    PubMed  PubMed Central  Google Scholar 

  106. Murphy CC, Greiner K, Plskova J, et al. Cyclosporine vs tacrolimus therapy for posterior and intermediate uveitis. Arch Ophthalmol (Chicago, Ill.: 1960). 2005;123(5):634–41.

    CAS  Google Scholar 

  107. Tanaka H, Kuroda A, Marusawa H, et al. Physicochemical properties of FK-506, a novel immunosuppressant isolated from Streptomyces tsukubaensis. Transplant Proc. 1987;19(5 Suppl 6):11–6.

    CAS  PubMed  Google Scholar 

  108. Kino T, Hatanaka H, Hashimoto M, et al. FK-506, a novel immunosuppressant isolated from a Streptomyces. I. Fermentation, isolation, and physico-chemical and biological characteristics. J Antibiot. 1987;40(9):1249–55.

    CAS  PubMed  Google Scholar 

  109. Venkataramanan R, Jain A, Cadoff E, et al. Pharmacokinetics of FK 506: preclinical and clinical studies. Transplant Proc. 1990;22(1):52–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Mochizuki M, Masuda K, Sakane T, et al. A multicenter clinical open trial of FK 506 in refractory uveitis, including Behcet’s disease. Japanese FK 506 Study Group on Refractory Uveitis. Transplant Proc. 1991;23(6):3343–6.

    CAS  PubMed  Google Scholar 

  111. Hogan AC, McAvoy CE, Dick AD, Lee RW. Long-term efficacy and tolerance of tacrolimus for the treatment of uveitis. Ophthalmology. 2007;114(5):1000–6.

    PubMed  Google Scholar 

  112. Sloper CM, Powell RJ, Dua HS. Tacrolimus (FK506) in the treatment of posterior uveitis refractory to cyclosporine. Ophthalmology. 1999;106(4):723–8.

    CAS  PubMed  Google Scholar 

  113. Kilmartin DJ, Forrester JV, Dick AD. Tacrolimus (FK506) in failed cyclosporin a therapy in endogenous posterior uveitis. Ocul Immunol Inflamm. 1998;6(2):101–9.

    CAS  PubMed  Google Scholar 

  114. Auerbach C, Robson JM. Chemical production of mutations. Nature. 1946;157:302.

    CAS  PubMed  Google Scholar 

  115. Osborne ED, Jordon JW, et al. Nitrogen mustard therapy in cutaneous blastomatous disease. J Am Med Assoc. 1947;135(17):1123–8.

    CAS  PubMed  Google Scholar 

  116. Gubner R, August S, Ginsberg V. Therapeutic suppression of tissue reactivity. II. Effect of aminopterin in rheumatoid arthritis and psoriasis. Am J Med Sci. 1951;221(2):176–82.

    CAS  PubMed  Google Scholar 

  117. Arnold H, Bourseaux F, Brock N. Chemotherapeutic action of a cyclic nitrogen mustard phosphamide ester (B 518-ASTA) in experimental tumours of the rat. Nature. 1958;181(4613):931.

    CAS  PubMed  Google Scholar 

  118. Pujari SS, Kempen JH, Newcomb CW, et al. Cyclophosphamide for ocular inflammatory diseases. Ophthalmology. 2010;117(2):356–65.

    PubMed  Google Scholar 

  119. Houssiau FA. Cyclophosphamide in lupus nephritis. Lupus. 2005;14(1):53–8.

    CAS  PubMed  Google Scholar 

  120. Alberts DS, Chang SY, Chen HS, Larcom BJ, Evans TL. Comparative pharmacokinetics of chlorambucil and melphalan in man. Recent Results Cancer Res. 1980;74:124–31.

    CAS  PubMed  Google Scholar 

  121. Ehrsson H, Wallin I, Simonsson B, Hartvig P, Oberg G. Effect of food on pharmacokinetics of chlorambucil and its main metabolite, phenylacetic acid mustard. Eur J Clin Pharmacol. 1984;27(1):111–4.

    CAS  PubMed  Google Scholar 

  122. Tessler HH, Jennings T. High-dose short-term chlorambucil for intractable sympathetic ophthalmia and Behcet’s disease. Br J Ophthalmol. 1990;74(6):353–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Goldstein DA, Fontanilla FA, Kaul S, Sahin O, Tessler HH. Long-term follow-up of patients treated with short-term high-dose chlorambucil for sight-threatening ocular inflammation. Ophthalmology. 2002;109(2):370–7.

    PubMed  Google Scholar 

  124. Miserocchi E, Baltatzis S, Ekong A, Roque M, Foster CS. Efficacy and safety of chlorambucil in intractable noninfectious uveitis: the Massachusetts Eye and Ear Infirmary experience. Ophthalmology. 2002;109(1):137–42.

    PubMed  Google Scholar 

  125. Fiers W. Tumor necrosis factor. Characterization at the molecular, cellular and in vivo level. FEBS Lett. 1991;285(2):199–212.

    CAS  PubMed  Google Scholar 

  126. Heller RA, Kronke M. Tumor necrosis factor receptor-mediated signaling pathways. J Cell Biol. 1994;126(1):5–9.

    CAS  PubMed  Google Scholar 

  127. Lerman MA, Burnham JM, Chang PY, et al. Response of pediatric uveitis to tumor necrosis factor-alpha inhibitors. J Rheumatol. 2013;40(8):1394–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Rau R. Adalimumab (a fully human anti-tumour necrosis factor alpha monoclonal antibody) in the treatment of active rheumatoid arthritis: the initial results of five trials. Ann Rheum Dis. 2002;61(Suppl 2):ii70–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Weisman MH, Moreland LW, Furst DE, et al. Efficacy, pharmacokinetic, and safety assessment of adalimumab, a fully human anti-tumor necrosis factor-alpha monoclonal antibody, in adults with rheumatoid arthritis receiving concomitant methotrexate: a pilot study. Clin Ther. 2003;25(6):1700–21.

    CAS  PubMed  Google Scholar 

  130. Suhler EB, Lowder CY, Goldstein DA, et al. Adalimumab therapy for refractory uveitis: results of a multicentre, open-label, prospective trial. Br J Ophthalmol. 2013;97(4):481–6.

    PubMed  Google Scholar 

  131. Biester S, Deuter C, Michels H, et al. Adalimumab in the therapy of uveitis in childhood. Br J Ophthalmol. 2007;91(3):319–24.

    PubMed  Google Scholar 

  132. Diaz-Llopis M, Garcia-Delpech S, Salom D, et al. Adalimumab therapy for refractory uveitis: a pilot study. J Ocul Pharmacol Ther. 2008;24(3):351–61.

    CAS  PubMed  Google Scholar 

  133. Tynjala P, Kotaniemi K, Lindahl P, et al. Adalimumab in juvenile idiopathic arthritis-associated chronic anterior uveitis. Rheumatology (Oxford, England). 2008;47(3):339–44.

    CAS  Google Scholar 

  134. Androudi S, Tsironi E, Kalogeropoulos C, Theodoridou A, Brazitikos P. Intravitreal adalimumab for refractory uveitis-related macular edema. Ophthalmology. 2010;117(8):1612–6.

    PubMed  Google Scholar 

  135. Giganti M, Beer PM, Lemanski N, Hartman C, Schartman J, Falk N. Adverse events after intravitreal infliximab (Remicade). Retina (Philadelphia, Pa.). 2010;30(1):71–80.

    Google Scholar 

  136. Pulido JS, Pulido JE, Michet CJ, Vile RG. More questions than answers: a call for a moratorium on the use of intravitreal infliximab outside of a well-designed trial. Retina (Philadelphia, Pa.). 2010;30(1):1–5.

    Google Scholar 

  137. Suhler EB, Smith JR, Wertheim MS, et al. A prospective trial of infliximab therapy for refractory uveitis: preliminary safety and efficacy outcomes. Arch Ophthalmol (Chicago, Ill.: 1960). 2005;123(7):903–12.

    CAS  Google Scholar 

  138. Suhler EB, Smith JR, Giles TR, et al. Infliximab therapy for refractory uveitis: 2-year results of a prospective trial. Arch Ophthalmol (Chicago, Ill.: 1960). 2009;127(6):819–22.

    CAS  Google Scholar 

  139. Riancho-Zarrabeitia L, Calvo-Rio V, Blanco R, et al. Anti-TNF-alpha therapy in refractory uveitis associated with sarcoidosis: multicenter study of 17 patients. Semin Arthritis Rheum. 2015;45(3):361–8.

    CAS  PubMed  Google Scholar 

  140. Ardoin SP, Kredich D, Rabinovich E, Schanberg LE, Jaffe GJ. Infliximab to treat chronic noninfectious uveitis in children: retrospective case series with long-term follow-up. Am J Ophthalmol. 2007;144(6):844–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Rajaraman RT, Kimura Y, Li S, Haines K, Chu DS. Retrospective case review of pediatric patients with uveitis treated with infliximab. Ophthalmology. 2006;113(2):308–14.

    PubMed  Google Scholar 

  142. Levy-Clarke G, Jabs DA, Read RW, Rosenbaum JT, Vitale A, Van Gelder RN. Expert panel recommendations for the use of anti-tumor necrosis factor biologic agents in patients with ocular inflammatory disorders. Ophthalmology. 2014;121(3):785–796.e783.

    PubMed  Google Scholar 

  143. Vallet H, Seve P, Biard L, et al. Infliximab versus adalimumab in the treatment of refractory inflammatory uveitis: a multicenter study from the French Uveitis Network. Arthritis Rheumatol (Hoboken, N.J.). 2016;68(6):1522–30.

    CAS  Google Scholar 

  144. Yazgan S, Celik U, Isik M, et al. Efficacy of golimumab on recurrent uveitis in HLA-B27-positive ankylosing spondylitis. Int Ophthalmol. 2017;37(1):139–45.

    PubMed  Google Scholar 

  145. Calvo-Rio V, Blanco R, Santos-Gomez M, et al. Golimumab in refractory uveitis related to spondyloarthritis. Multicenter study of 15 patients. Semin Arthritis Rheum. 2016;46(1):95–101.

    CAS  PubMed  Google Scholar 

  146. Miserocchi E, Modorati G, Pontikaki I, Meroni PL, Gerloni V. Long-term treatment with golimumab for severe uveitis. Ocul Immunol Inflamm. 2014;22(2):90–5.

    CAS  PubMed  Google Scholar 

  147. Galor A, Perez VL, Hammel JP, Lowder CY. Differential effectiveness of etanercept and infliximab in the treatment of ocular inflammation. Ophthalmology. 2006;113(12):2317–23.

    PubMed  Google Scholar 

  148. Kaymakcalan Z, Sakorafas P, Bose S, et al. Comparisons of affinities, avidities, and complement activation of adalimumab, infliximab, and etanercept in binding to soluble and membrane tumor necrosis factor. Clin Immunol (Orlando, Fla.). 2009;131(2):308–16.

    CAS  Google Scholar 

  149. Van den Brande JM, Braat H, van den Brink GR, et al. Infliximab but not etanercept induces apoptosis in lamina propria T-lymphocytes from patients with Crohn’s disease. Gastroenterology. 2003;124(7):1774–85.

    PubMed  Google Scholar 

  150. Isaacs A, Lindenmann J. Virus interference. I. The interferon. By A. Isaacs and J. Lindenmann, 1957. J Interf Res. 1987;7(5):429–38.

    CAS  Google Scholar 

  151. Zou W, Machelon V, Coulomb-L’Hermin A, et al. Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med. 2001;7(12):1339–46.

    CAS  PubMed  Google Scholar 

  152. Colonna M, Krug A, Cella M. Interferon-producing cells: on the front line in immune responses against pathogens. Curr Opin Immunol. 2002;14(3):373–9.

    CAS  PubMed  Google Scholar 

  153. Vallin H, Perers A, Alm GV, Ronnblom L. Anti-double-stranded DNA antibodies and immunostimulatory plasmid DNA in combination mimic the endogenous IFN-alpha inducer in systemic lupus erythematosus. J Immunol (Baltimore, Md.: 1950). 1999;163(11):6306–13.

    CAS  Google Scholar 

  154. Wampler Muskardin T, Vashisht P, Dorschner JM, et al. Increased pretreatment serum IFN-beta/alpha ratio predicts non-response to tumour necrosis factor alpha inhibition in rheumatoid arthritis. Ann Rheum Dis. 2016;75(10):1757–62.

    PubMed  Google Scholar 

  155. Okada AA, Keino H, Suzuki J, Sakai J, Usui M, Mizuguchi J. Kinetics of intraocular cytokines in the suppression of experimental autoimmune uveoretinitis by type I IFN. Int Immunol. 1998;10(12):1917–22.

    CAS  PubMed  Google Scholar 

  156. Okada AA, Keino H, Fukai T, Sakai J, Usui M, Mizuguchi J. Effect of type I interferon on experimental autoimmune uveoretinitis in rats. Ocul Immunol Inflamm. 1998;6(4):215–26.

    CAS  PubMed  Google Scholar 

  157. Stubiger N, Crane IJ, Kotter I, et al. Interferon alpha 2a in IRPB-derived peptide-induced EAU—part I. Adv Exp Med Biol. 2003;528:537–40.

    PubMed  Google Scholar 

  158. Bodaghi B, Gendron G, Wechsler B, et al. Efficacy of interferon alpha in the treatment of refractory and sight threatening uveitis: a retrospective monocentric study of 45 patients. Br J Ophthalmol. 2007;91(3):335–9.

    PubMed  Google Scholar 

  159. Gueudry J, Wechsler B, Terrada C, et al. Long-term efficacy and safety of low-dose interferon alpha2a therapy in severe uveitis associated with Behcet disease. Am J Ophthalmol. 2008;146(6):837–844.e831.

    CAS  PubMed  Google Scholar 

  160. Hasanreisoglu M, Cubuk MO, Ozdek S, Gurelik G, Aktas Z, Hasanreisoglu B. Interferon alpha-2a therapy in patients with refractory Behcet uveitis. Ocul Immunol Inflamm. 2017;25(1):71–5.

    CAS  PubMed  Google Scholar 

  161. Park JY, Chung YR, Lee K, Song JH, Lee ES. Clinical experience of interferon alfa-2a treatment for refractory uveitis in Behcet’s disease. Yonsei Med J. 2015;56(4):1158–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Butler NJ, Suhler EB, Rosenbaum JT. Interferon alpha 2b in the treatment of uveitic cystoid macular edema. Ocul Immunol Inflamm. 2012;20(2):86–90.

    CAS  PubMed  Google Scholar 

  163. Doycheva D, Deuter C, Stuebiger N, Zierhut M. Interferon-alpha-associated presumed ocular sarcoidosis. Graefes Arch Clin Exp Ophthalmol. 2009;247(5):675–80.

    CAS  PubMed  Google Scholar 

  164. Durand JM, Soubeyrand J. Interferon-alpha 2b for refractory ocular Behcet’s disease. Lancet (London, England). 1994;344(8918):333.

    CAS  Google Scholar 

  165. Fleischmann M, Celerier P, Bernard P, Litoux P, Dreno B. Long-term interferon-alpha therapy induces autoantibodies against epidermis. Dermatology (Basel, Switzerland). 1996;192(1):50–5.

    CAS  Google Scholar 

  166. Schilling PJ, Kurzrock R, Kantarjian H, Gutterman JU, Talpaz M. Development of systemic lupus erythematosus after interferon therapy for chronic myelogenous leukemia. Cancer. 1991;68(7):1536–7.

    CAS  PubMed  Google Scholar 

  167. Becker MD, Adamus G, Davey MP, Rosenbaum JT. The role of T cells in autoimmune uveitis. Ocul Immunol Inflamm. 2000;8(2):93–100.

    CAS  PubMed  Google Scholar 

  168. Caspi RR, Sun B, Agarwal RK, et al. T cell mechanisms in experimental autoimmune uveoretinitis: susceptibility is a function of the cytokine response profile. Eye (London, England). 1997;11(Pt 2):209–12.

    Google Scholar 

  169. Whitcup SM, Pleyer U, Lai JC, Lutz S, Mochizuki M, Chan CC. Topical liposome-encapsulated FK506 for the treatment of endotoxin-induced uveitis. Ocul Immunol Inflamm. 1998;6(1):51–6.

    CAS  PubMed  Google Scholar 

  170. Parikh JG, Tawansy KA, Rao NA. Immunohistochemical study of chronic nongranulomatous anterior uveitis in juvenile idiopathic arthritis. Ophthalmology. 2008;115(10):1833–6.

    PubMed  Google Scholar 

  171. Maloney DG, Grillo-Lopez AJ, White CA, et al. IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood. 1997;90(6):2188–95.

    CAS  PubMed  Google Scholar 

  172. Keogh KA, Wylam ME, Stone JH, Specks U. Induction of remission by B lymphocyte depletion in eleven patients with refractory antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum. 2005;52(1):262–8.

    PubMed  Google Scholar 

  173. Lasave AF, You C, Ma L, et al. Long-term outcomes of rituximab therapy in patients with noninfectious posterior uveitis refractory to conventional immunosuppressive therapy. Retina. 2018;38(2):395–402.

    Google Scholar 

  174. Lopez-Gonzalez R, Loza E, Jover JA, et al. Treatment of refractory posterior uveitis with infliximab: a 7-year follow-up study. Scand J Rheumatol. 2009;38(1):58–62.

    CAS  PubMed  Google Scholar 

  175. Miserocchi E, Modorati G, Berchicci L, Pontikaki I, Meroni P, Gerloni V. Long-term treatment with rituximab in severe juvenile idiopathic arthritis-associated uveitis. Br J Ophthalmol. 2016;100(6):782–6.

    PubMed  Google Scholar 

  176. Heiligenhaus A, Miserocchi E, Heinz C, Gerloni V, Kotaniemi K. Treatment of severe uveitis associated with juvenile idiopathic arthritis with anti-CD20 monoclonal antibody (rituximab). Rheumatology (Oxford, England). 2011;50(8):1390–4.

    CAS  Google Scholar 

  177. Guex-Crosier Y, Raber J, Chan CC, et al. Humanized antibodies against the alpha-chain of the IL-2 receptor and against the beta-chain shared by the IL-2 and IL-15 receptors in a monkey uveitis model of autoimmune diseases. J Immunol (Baltimore, Md.: 1950). 1997;158(1):452–8.

    CAS  Google Scholar 

  178. Nussenblatt RB, Thompson DJ, Li Z, et al. Humanized anti-interleukin-2 (IL-2) receptor alpha therapy: long-term results in uveitis patients and preliminary safety and activity data for establishing parameters for subcutaneous administration. J Autoimmun. 2003;21(3):283–93.

    CAS  PubMed  Google Scholar 

  179. Nussenblatt RB, Peterson JS, Foster CS, et al. Initial evaluation of subcutaneous daclizumab treatments for noninfectious uveitis: a multicenter noncomparative interventional case series. Ophthalmology. 2005;112(5):764–70.

    PubMed  Google Scholar 

  180. Sobrin L, Huang JJ, Christen W, Kafkala C, Choopong P, Foster CS. Daclizumab for treatment of birdshot chorioretinopathy. Arch Ophthalmol (Chicago, Ill.: 1960). 2008;126(2):186–91.

    CAS  Google Scholar 

  181. Buggage RR, Levy-Clarke G, Sen HN, et al. A double-masked, randomized study to investigate the safety and efficacy of daclizumab to treat the ocular complications related to Behcet’s disease. Ocul Immunol Inflamm. 2007;15(2):63–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Murray PI, Hoekzema R, van Haren MA, de Hon FD, Kijlstra A. Aqueous humor interleukin-6 levels in uveitis. Invest Ophthalmol Vis Sci. 1990;31(5):917–20.

    CAS  PubMed  Google Scholar 

  183. Kramer M, Monselise Y, Bahar I, Cohen Y, Weinberger D, Goldenberg-Cohen N. Serum cytokine levels in active uveitis and remission. Curr Eye Res. 2007;32(7–8):669–75.

    CAS  PubMed  Google Scholar 

  184. Calvo-Rio V, Santos-Gomez M, Calvo I, et al. Anti-Interleukin-6 receptor tocilizumab for severe juvenile idiopathic arthritis-associated uveitis refractory to anti-tumor necrosis factor therapy: a multicenter study of twenty-five patients. Arthritis Rheumatol (Hoboken, NJ). 2017;69(3):668–75.

    CAS  Google Scholar 

  185. Adan A, Mesquida M, Llorenc V, et al. Tocilizumab treatment for refractory uveitis-related cystoid macular edema. Graefes Arch Clin Exp Ophthalmol. 2013;251(11):2627–32.

    CAS  PubMed  Google Scholar 

  186. Yamada A, Salama AD, Sayegh MH. The role of novel T cell costimulatory pathways in autoimmunity and transplantation. J Am Soc Nephrol. 2002;13(2):559–75.

    CAS  PubMed  Google Scholar 

  187. Sayegh MH, Turka LA. The role of T-cell costimulatory activation pathways in transplant rejection. N Engl J Med. 1998;338(25):1813–21.

    CAS  PubMed  Google Scholar 

  188. Birolo C, Zannin ME, Arsenyeva S, et al. Comparable efficacy of Abatacept used as first-line or second-line biological agent for severe juvenile idiopathic arthritis-related uveitis. J Rheumatol. 2016;43(11):2068–73.

    CAS  PubMed  Google Scholar 

  189. Megget K. FEATURE: Follow the leader. 2015; http://www.pharmatimes.com/news/feature_follow_the_leader_971332. Accessed 12 Mar 2017.

  190. Jacobs I, Petersel D, Isakov L, Lula S, Lea Sewell K. Biosimilars for the treatment of chronic inflammatory diseases: a systematic review of published evidence. BioDrugs. 2016;30(6):525–70.

    PubMed  PubMed Central  Google Scholar 

Download references

Compliance with Ethical Requirements

John Gonzales and Nisha Acharya declare that they have no conflict of interest. No human or animal studies were carried out by the authors for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Gonzales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gonzales, J.A., Acharya, N. (2019). Noninfectious Uveitis: Immunomodulatory Agents and Biologicals. In: Rao, N., Schallhorn, J., Rodger, D. (eds) Posterior Uveitis. Essentials in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-030-03140-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03140-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03139-8

  • Online ISBN: 978-3-030-03140-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics