Waves in Unbounded Regions

  • Jiashi Yang
Part of the Advances in Mechanics and Mathematics book series (AMMA, volume 9)


This chapter is on waves in regions unbounded in at least one direction. These waves can be propagating or stationary waves. They are nontrivial solutions of homogeneous differential equations and boundary conditions. Sections 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, and 4.13 are on antiplane problems of polarized ceramics for which the notation in Sect. 2.9 is followed.


Plane wave Reflection Refraction Surface wave Interface wave Plate wave Gap wave Scattering 


  1. 1.
    J.L. Bleustein, A new surface wave in piezoelectric materials. Appl. Phys. Lett. 13, 412–413 (1968)CrossRefGoogle Scholar
  2. 2.
    Y.V. Gulyaev, Electroacoustic surface waves in solids. JETP Lett. 9, 37–38 (1969)Google Scholar
  3. 3.
    F.S. Hickernell, Shear horizontal BG surface acoustic waves on piezoelectrics: a historical note. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 52, 809–811 (2005)CrossRefGoogle Scholar
  4. 4.
    J.S. Yang, Antiplane Motions of Piezoceramics and Acoustic Wave Devices (World Scientific, Singapore, 2010)CrossRefGoogle Scholar
  5. 5.
    C. Maerfeld, P. Tournois, Pure shear elastic surface wave guided by the interface of two semi-infinite media. Appl. Phys. Lett. 19, 117–118 (1971)CrossRefGoogle Scholar
  6. 6.
    J.L. Bleustein, Some simple modes of wave propagation in an infinite piezoelectric plate. J. Acoust. Soc. Am. 45, 614–620 (1969)CrossRefGoogle Scholar
  7. 7.
    J.S. Yang, Z.G. Chen, Y.T. Hu, Propagation of thickness-twist waves through a joint between two semi-infinite piezoelectric plates. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 54, 888–891 (2007)CrossRefGoogle Scholar
  8. 8.
    J.S. Yang, Z.G. Chen, Y.T. Hu, Trapped thickness-twist modes in an inhomogeneous piezoelectric plate. Philos. Mag. Lett. 86, 699–705 (2006)CrossRefGoogle Scholar
  9. 9.
    R.G. Curtis, M. Redwood, Transverse surface waves on a piezoelectric material carrying a metal layer of finite thickness. J. Appl. Phys. 44, 2002–2007 (1973)CrossRefGoogle Scholar
  10. 10.
    Y.V. Gulyaev, V.P. Plesskii, Acoustic gap waves in piezoelectric materials. Sov. Phys. Acoust. 23, 410–413 (1977)Google Scholar
  11. 11.
    C.L. Chen, On the electroacoustic waves guided by a cylindrical piezoelectric surface. J. Appl. Phys. 44, 3841–3847 (1973)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jiashi Yang
    • 1
  1. 1.Department of Mechanical and Materials EngineeringUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations