Regulation Valve Co-operation with the Pipework

  • Damian Piotr MuniakEmail author
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 187)


This section presents a discussion of issues related to the valve co-operation with the pipework in which the valve is installed. The analysis of the effects of regulation by means of a valve, i.e. by changing the medium mass/volume flow due to a change in the valve setting (opening degree) is related not only to the valve regulation characteristic but also to an essential additional factor referred to as the valve authority.


  1. 1.
    Ali, M.: Knowledge-based optimization model for control valve locations in water distribution networks. J. Water Res. Plann. Manag. 141(1) (2015)Google Scholar
  2. 2.
    Bianchi, A., Mambretti, S., Pianta, P.: Practical formulas for the dimensioning of air valves. J. Hydraul. Eng. 133(10), 1177–1180 (2007)CrossRefGoogle Scholar
  3. 3.
    Catalogue information of DanfossGoogle Scholar
  4. 4.
    Catalogue information of HerzGoogle Scholar
  5. 5.
    European Standard EN 215:2004: Thermostatic radiator valves—requirements and test methodsGoogle Scholar
  6. 6.
    Farenzena, M., Trierweiler, J.O.: Valve stiction estimation using global optimization. Control Eng. Pract. 20(4), 379–385 (2012)CrossRefGoogle Scholar
  7. 7.
    Garcia, C.: Comparison of friction models applied to a control valve. Control Eng. Pract. 16(10), 1231–1243 (2008)CrossRefGoogle Scholar
  8. 8.
    Gramberg, A.: Die örtliche Regelung der Wasserheizung, Gesundh.-Ing. t. 32, 6/1909Google Scholar
  9. 9.
    Hägglund, T.: A shape-analysis approach for diagnosis of stiction in control valves. Control Eng. Pract. 19(8), 782–789 (2011)CrossRefGoogle Scholar
  10. 10.
    Jablonowski, H.: Termostatyczne zawory grzejnikowe. Pomiar, Regulacja, Montaż, Hydraulika (Thermostatic Radiator Valves. Measurement, Adjustment, Assembly, Hydraulics), Instalator Polski, Warszawa (1995)Google Scholar
  11. 11.
    Jablonowski, H.: Thermostatventil-Praxis. Meβtechnik Regelung Montage Hydraulik, Gentner Verlag, Stuttgart (1994)Google Scholar
  12. 12.
    Koczyk, H. (ed.): Ogrzewnictwo praktyczne. Projektowanie, montaż, eksploatacja (Practical Heating. Design, Installation, Operation), SYSTHERM SERWIS, Poznań (2015)Google Scholar
  13. 13.
    Kołodziejczyk, W.: Armatura regulacyjna w ogrzewaniach wodnych (Control armature in hydronic heating systems). Arkady, Warszawa (1985)Google Scholar
  14. 14.
    Kołodziejczyk, W.: Termostatyczne zawory grzejnikowe w instalacjach centralnego ogrzewania (Thermostatic radiator valves in central heating systems). Centralny Ośrodek Informacji budownictwa, Warszawa (1992)Google Scholar
  15. 15.
    Kozłowski, B.: Równoważenie hydrauliczne obiegów grzejnych i chłodzących (Hydraulic balancing of heating and cooling circuits). Instytut Techniki Budowlanej, Warszawa (2012)Google Scholar
  16. 16.
    Lee, P., Vítkovský, J., Lambert, M., Simpson, A.: Valve design for extracting response functions from hydraulic systems using pseudorandom binary signals. J. Hydraul. Eng. 134(6), 858–864 (2008)CrossRefGoogle Scholar
  17. 17.
    McPherson, D.L.: Air Valve Sizing and Location: A Prospective. In: Proceedings of Pipelines Conference, pp. 905–919 (2009)Google Scholar
  18. 18.
    Mielnicki, J.S.: Centralne ogrzewanie. Regulacja i eksploatacja Cetral heating. Regulation and exploatation), Arkady, Warszawa (1985)Google Scholar
  19. 19.
    Mielnicki, J.S.: Możliwości regulacji wstępnej i eksploatacyjnej za pomocą zaworów grzejnikowych (Possibility of preliminary and exploitation regulation by means of radiator valves), District Heatin, Heating, Vemtilation, (1), 3/-1969, pp. 73–80Google Scholar
  20. 20.
    Mielnicki, J.S.: Własności statyczne ogrzewań wodnych w zakresie warunków termicznych i hydraulicznych (Static properties of water heating systems in terms of thermal and hydraulic conditions), Przegląd Informacyjny—Ciepłownictwo, 1/1971Google Scholar
  21. 21.
    Muniak, D.: Grzejniki w wodnych instalacjach grzewczych. Dobór, konstrukcja i charakterystyki cieplne Radiators in hydronic heating installations. (Structure, selection and thermal characteristics), WNT/PWN, Warszawa (2015)Google Scholar
  22. 22.
    Muniak, D.: Radiators in hydronic heating installations. Structure, selection and thermal characteristics. Springer (2017)Google Scholar
  23. 23.
    Palau-Salvador, G., González-Altozano, P., Balbastre-Peralta, I., Arviza-Valverde, J.: Improvement in a Control Valve Geometry by CFD Techniques. In: Proceedings of Pipelines Conference, pp. 202–215 (2015)Google Scholar
  24. 24.
    Peffer, T., Pritoni, M., Meier, A., Aragon, C., Perry, D.: How people use thermostats in homes: a review. Build. Env. 12(46), 2529–2541 (2011)CrossRefGoogle Scholar
  25. 25.
    Pyrkov, V.: Gidrawliczeskoje regulirowanije sistem otoplenija i ochłażdjenija. Teorija i praktika, Danfoss, Kijów (2005)Google Scholar
  26. 26.
    Pyrkov, V.: Regulacja hydrauliczna systemów ogrzewania i chłodzenia. Teoria i praktyka (Hydraulic regulation of heating and cooling systems. Theory and practice), Systherm Serwis, Poznań (2007)Google Scholar
  27. 27.
    Rahmeyer, W., Driskell, L.: Control valve flow coefficients. J. Transp. Eng. 111(4), 358–364 (1985)CrossRefGoogle Scholar
  28. 28.
    Roos, H.: Hydraulik der Wasserheizung, wydanie 3, Oldenbourg Verlag GmbH, Monachium (1995)Google Scholar
  29. 29.
    Roos, H.: Zagadnienia hydrauliczne w instalacjach ogrzewania wodnego (Hydraulic issues in water heating installations). PNT CIBET, Warszawa (1997)Google Scholar
  30. 30.
    Scali, C., Ghelardoni, C.: An improved qualitative shape analysis technique for automatic detection of valve stiction in flow control loops. Control Eng. Pract. 16(12), 1501–1508 (2008)CrossRefGoogle Scholar
  31. 31.
    Scott, D.: The Importance of Valves to Asset Management and Pipeline Performance. In: Proceedings of Pipelines Conference, pp. 1–8 (2008)Google Scholar
  32. 32.
    Shoukat Choudhury, M.A.A., Thornhill, N.F., Shah, S.L.: Modelling valve stiction. Control Eng. Pract. 13(5), 641–658 (2005)CrossRefGoogle Scholar
  33. 33.
    Suda, M.: Simulation of valve closure after pump failure in pipeline. J. Hydraul. Eng. 117(3), 392–396 (1991)CrossRefGoogle Scholar
  34. 34.
    Weker, P., Mineur, J.M.: A performance index for thermostatic radiator valves. Appl. Energy 6(3), 203–215 (1980)CrossRefGoogle Scholar
  35. 35.
    Wymagania techniczne COBRTI Instal, zeszyt 2: Wytyczne projektowania instalacji centralnego ogrzewania (Technical requirements of COBRTI Instal, book 2: Design guidelines for central heating installations), COBRTI Instal, Warszawa (2001)Google Scholar
  36. 36.
    Xie, L., Cong, Y., Horch, A.: An improved valve stiction simulation model based on ISA standard tests. Control Eng. Pract. 21(10), 1359–1368 (2013)CrossRefGoogle Scholar
  37. 37.
    Xu, B., Fu, L., Di, H.: Dynamic simulation of space heating systems with radiators controlled by TRVs in buildings. Energy Build. 40(9), 1755–1764 (2008)CrossRefGoogle Scholar
  38. 38.
    Xu, B., Huang, A., Fu, L., Di, H.: Simulation and analysis on control effectiveness of TRVs in district heating systems. Energy Build. 43(5), 1169–1174 (2011)CrossRefGoogle Scholar
  39. 39.
    Xu, J., Nie, Z., Liu, T., Guan, X., Zhang, P., Wu, Z., Sun, P., Ke, L.: The Control Valve Sizing and Selection Used in Central Asia-China Gas Pipeline Project. In: Proceedings of ICPTT, pp. 262–269 (2013)Google Scholar
  40. 40.
    Zhang, S., Zhang, J., Liu, L., Zhang, Q.: Simulating the working conditions of pipeline system with control valves. In: Proceedings of ICPTT, pp. 532–541 (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Thermal Power EngineeringCracow University of TechnologyKrakówPoland

Personalised recommendations