Skip to main content

Alternate Translational Initiation of Dystrophin: A Novel Therapeutic Approach

  • Chapter
  • First Online:
  • 1113 Accesses

Abstract

A founder allele in the DMD gene results in a syndrome ranging from minimally symptomatic Becker muscular dystrophy to asymptomatic hyperCKemia via expression of a highly functional N-terminal deleted version of the dystrophin protein (the ΔCH1 isoform). Translation of this protein results from utilization of a recently discovered internal ribosome entry site (IRES) within exon 5. The IRES is not active in the presence of a duplication of exon 2—the most common single-exon duplication—but is active in its absence. We have developed an AAV-encapsidated U7snRNA vector that targets and induces skipping of exon 2, resulting in either expression of a wild-type dystrophin or of the ΔCH1 isoform, either of which is therapeutic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Monaco AP, Neve RL, Colletti-Feener C, Bertelson CJ, Kurnit DM, Kunkel LM (1986) Isolation of candidate cDNAs for portions of the Duchenne muscular dystrophy gene. Nature 323(6089):646–650. https://doi.org/10.1038/323646a0

    Article  CAS  PubMed  Google Scholar 

  2. Nudel U, Zuk D, Einat P, Zeelon E, Levy Z, Neuman S, Yaffe D (1989) Duchenne muscular dystrophy gene product is not identical in muscle and brain. Nature 337(6202):76–78. https://doi.org/10.1038/337076a0

    Article  CAS  PubMed  Google Scholar 

  3. Holder E, Maeda M, Bies RD (1996) Expression and regulation of the dystrophin Purkinje promoter in human skeletal muscle, heart, and brain. Hum Genet 97(2):232–239

    Article  CAS  Google Scholar 

  4. Monaco AP, Bertelson CJ, Liechti-Gallati S, Moser H, Kunkel LM (1988) An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 2(1):90–95

    Article  CAS  Google Scholar 

  5. Mendell JR, Shilling C, Leslie ND, Flanigan KM, al-Dahhak R, Gastier-Foster J, Kneile K, Dunn DM, Duval B, Aoyagi A, Hamil C, Mahmoud M, Roush K, Bird L, Rankin C, Lilly H, Street N, Chandrasekar R, Weiss RB (2012) Evidence-based path to newborn screening for Duchenne muscular dystrophy. Ann Neurol 71(3):304–313. https://doi.org/10.1002/ana.23528

    Article  CAS  PubMed  Google Scholar 

  6. Wein N, Alfano L, Flanigan KM (2015) Genetics and emerging treatments for Duchenne and Becker muscular dystrophy. Pediatr Clin N Am 62(3):723–742. https://doi.org/10.1016/j.pcl.2015.03.008

    Article  Google Scholar 

  7. Flanigan KM (2014) Duchenne and Becker muscular dystrophies. Neurol Clin 32(3):671–688, viii. https://doi.org/10.1016/j.ncl.2014.05.002

    Article  PubMed  Google Scholar 

  8. Dent KM, Dunn DM, von Niederhausern AC, Aoyagi AT, Kerr L, Bromberg MB, Hart KJ, Tuohy T, White S, den Dunnen JT, Weiss RB, Flanigan KM (2005) Improved molecular diagnosis of dystrophinopathies in an unselected clinical cohort. Am J Med Genet A 134(3):295–298. https://doi.org/10.1002/ajmg.a.30617

    Article  CAS  PubMed  Google Scholar 

  9. White SJ, Aartsma-Rus A, Flanigan KM, Weiss RB, Kneppers AL, Lalic T, Janson AA, Ginjaar HB, Breuning MH, den Dunnen JT (2006) Duplications in the DMD gene. Hum Mutat 27(9):938–945. https://doi.org/10.1002/humu.20367

    Article  CAS  PubMed  Google Scholar 

  10. Bies RD, Caskey CT, Fenwick R (1992) An intact cysteine-rich domain is required for dystrophin function. J Clin Invest 90(2):666–672. https://doi.org/10.1172/JCI115909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aartsma-Rus A, Van Deutekom JC, Fokkema IF, Van Ommen GJ, Den Dunnen JT (2006) Entries in the Leiden Duchenne muscular dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule. Muscle Nerve 34(2):135–144. https://doi.org/10.1002/mus.20586

    Article  CAS  PubMed  Google Scholar 

  12. Flanigan KM, Dunn DM, von Niederhausern A, Soltanzadeh P, Howard MT, Sampson JB, Swoboda KJ, Bromberg MB, Mendell JR, Taylor LE, Anderson CB, Pestronk A, Florence JM, Connolly AM, Mathews KD, Wong B, Finkel RS, Bonnemann CG, Day JW, McDonald C, United Dystrophinopathy Project Consortium, Weiss RB (2011) Nonsense mutation-associated Becker muscular dystrophy: interplay between exon definition and splicing regulatory elements within the DMD gene. Hum Mutat 32(3):299–308. https://doi.org/10.1002/humu.21426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gurvich OL, Maiti B, Weiss RB, Aggarwal G, Howard MT, Flanigan KM (2009) DMD exon 1 truncating point mutations: amelioration of phenotype by alternative translation initiation in exon 6. Hum Mutat 30(4):633–640. https://doi.org/10.1002/humu.20913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Flanigan KM, Dunn DM, von Niederhausern A, Howard MT, Mendell J, Connolly A, Saunders C, Modrcin A, Dasouki M, Comi GP, Del Bo R, Pickart A, Jacobson R, Finkel R, Medne L, Weiss RB (2009) DMD Trp3X nonsense mutation associated with a founder effect in north American families with mild Becker muscular dystrophy. Neuromuscul Disord 19(11):743–748. https://doi.org/10.1016/j.nmd.2009.08.010

    Article  PubMed  PubMed Central  Google Scholar 

  15. Winnard AV, Mendell JR, Prior TW, Florence J, Burghes AH (1995) Frameshift deletions of exons 3-7 and revertant fibers in Duchenne muscular dystrophy: mechanisms of dystrophin production. Am J Hum Genet 56(1):158–166

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Muntoni F, Gobbi P, Sewry C, Sherratt T, Taylor J, Sandhu SK, Abbs S, Roberts R, Hodgson SV, Bobrow M et al (1994) Deletions in the 5’ region of dystrophin and resulting phenotypes. J Med Genet 31(11):843–847

    Article  CAS  Google Scholar 

  17. Lacerda R, Menezes J, Romao L (2017) More than just scanning: the importance of cap-independent mRNA translation initiation for cellular stress response and cancer. Cell Mol Life Sci 74(9):1659–1680. https://doi.org/10.1007/s00018-016-2428-2

    Article  CAS  PubMed  Google Scholar 

  18. Heppner Goss K, Trzepacz C, Tuohy TM, Groden J (2002) Attenuated APC alleles produce functional protein from internal translation initiation. Proc Natl Acad Sci U S A 99(12):8161–8166. https://doi.org/10.1073/pnas.112072199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wein N, Vulin A, Falzarano MS, Szigyarto CA, Maiti B, Findlay A, Heller KN, Uhlen M, Bakthavachalu B, Messina S, Vita G, Passarelli C, Brioschi S, Bovolenta M, Neri M, Gualandi F, Wilton SD, Rodino-Klapac LR, Yang L, Dunn DM, Schoenberg DR, Weiss RB, Howard MT, Ferlini A, Flanigan KM (2014) Translation from a DMD exon 5 IRES results in a functional dystrophin isoform that attenuates dystrophinopathy in humans and mice. Nat Med 20(9):992–1000. https://doi.org/10.1038/nm.3628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Johannes G, Carter MS, Eisen MB, Brown PO, Sarnow P (1999) Identification of eukaryotic mRNAs that are translated at reduced cap binding complex eIF4F concentrations using a cDNA microarray. Proc Natl Acad Sci U S A 96(23):13118–13123

    Article  CAS  Google Scholar 

  21. Wein N, Vulin A, Falzarano MS, Szigyarto CA, Maiti B, Findlay A, Heller KN, Uhlen M, Bakthavachalu B, Messina S, Vita G, Passarelli C, Gualandi F, Wilton SD, Rodino-Klapac LR, Yang L, Dunn DM, Schoenberg DR, Weiss RB, Howard MT, Ferlini A, Flanigan KM (2014) Translation from a DMD exon 5 IRES results in a functional dystrophin isoform that attenuates dystrophinopathy in humans and mice. Nat Med 20(9):992–1000. https://doi.org/10.1038/nm.3628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aartsma-Rus A, Janson AA, Heemskerk JA, De Winter CL, Van Ommen GJ, Van Deutekom JC (2006) Therapeutic modulation of DMD splicing by blocking exonic splicing enhancer sites with antisense oligonucleotides. Ann N Y Acad Sci 1082:74–76. https://doi.org/10.1196/annals.1348.058

    Article  CAS  PubMed  Google Scholar 

  23. Bladen CL, Salgado D, Monges S, Foncuberta ME, Kekou K, Kosma K, Dawkins H, Lamont L, Roy AJ, Chamova T, Guergueltcheva V, Chan S, Korngut L, Campbell C, Dai Y, Wang J, Barisic N, Brabec P, Lahdetie J, Walter MC, Schreiber-Katz O, Karcagi V, Garami M, Viswanathan V, Bayat F, Buccella F, Kimura E, Koeks Z, van den Bergen JC, Rodrigues M, Roxburgh R, Lusakowska A, Kostera-Pruszczyk A, Zimowski J, Santos R, Neagu E, Artemieva S, Rasic VM, Vojinovic D, Posada M, Bloetzer C, Jeannet PY, Joncourt F, Diaz-Manera J, Gallardo E, Karaduman AA, Topaloglu H, El Sherif R, Stringer A, Shatillo AV, Martin AS, Peay HL, Bellgard MI, Kirschner J, Flanigan KM, Straub V, Bushby K, Verschuuren J, Aartsma-Rus A, Beroud C, Lochmuller H (2015) The TREAT-NMD DMD global database: analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum Mutat 36(4):395–402. https://doi.org/10.1002/humu.22758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Henderson DM, Lee A, Ervasti JM (2010) Disease-causing missense mutations in actin binding domain 1 of dystrophin induce thermodynamic instability and protein aggregation. Proc Natl Acad Sci U S A 107(21):9632–9637. https://doi.org/10.1073/pnas.1001517107

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mendell JR, Rodino-Klapac LR, Sahenk Z, Roush K, Bird L, Lowes LP, Alfano L, Gomez AM, Lewis S, Kota J, Malik V, Shontz K, Walker CM, Flanigan KM, Corridore M, Kean JR, Allen HD, Shilling C, Melia KR, Sazani P, Saoud JB, Kaye EM, Eteplirsen Study G (2013) Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann Neurol 74(5):637–647. https://doi.org/10.1002/ana.23982

    Article  CAS  PubMed  Google Scholar 

  26. Mendell JR, Goemans N, Lowes LP, Alfano LN, Berry K, Shao J, Kaye EM, Mercuri E, Eteplirsen Study G, Telethon Foundation DMDIN (2016) Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. Ann Neurol 79(2):257–271. https://doi.org/10.1002/ana.24555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aartsma-Rus A, Kaman WE, Bremmer-Bout M, Janson AA, den Dunnen JT, van Ommen GJ, van Deutekom JC (2004) Comparative analysis of antisense oligonucleotide analogs for targeted DMD exon 46 skipping in muscle cells. Gene Ther 11(18):1391–1398. https://doi.org/10.1038/sj.gt.3302313

    Article  CAS  PubMed  Google Scholar 

  28. Suter D, Tomasini R, Reber U, Gorman L, Kole R, Schumperli D (1999) Double-target antisense U7 snRNAs promote efficient skipping of an aberrant exon in three human beta-thalassemic mutations. Hum Mol Genet 8(13):2415–2423

    Article  CAS  Google Scholar 

  29. Chaouch S, Mouly V, Goyenvalle A, Vulin A, Mamchaoui K, Negroni E, Di Santo J, Butler-Browne G, Torrente Y, Garcia L, Furling D (2009) Immortalized skin fibroblasts expressing conditional MyoD as a renewable and reliable source of converted human muscle cells to assess therapeutic strategies for muscular dystrophies: validation of an exon-skipping approach to restore dystrophin in Duchenne muscular dystrophy cells. Hum Gene Ther 20(7):784–790. https://doi.org/10.1089/hum.2008.163

    Article  CAS  PubMed  Google Scholar 

  30. Goyenvalle A, Vulin A, Fougerousse F, Leturcq F, Kaplan JC, Garcia L, Danos O (2004) Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping. Science 306(5702):1796–1799. https://doi.org/10.1126/science.1104297

    Article  CAS  PubMed  Google Scholar 

  31. Wein N, Avril A, Bartoli M, Beley C, Chaouch S, Laforet P, Behin A, Butler-Browne G, Mouly V, Krahn M, Garcia L, Levy N (2010) Efficient bypass of mutations in dysferlin deficient patient cells by antisense-induced exon skipping. Hum Mutat 31(2):136–142. https://doi.org/10.1002/humu.21160

    Article  CAS  PubMed  Google Scholar 

  32. Vulin A, Wein N, Simmons TR, Rutherford AM, Findlay AR, Yurkoski JA, Kaminoh Y, Flanigan KM (2015) The first exon duplication mouse model of Duchenne muscular dystrophy: a tool for therapeutic development. Neuromuscul Disord 25(11):827–834. https://doi.org/10.1016/j.nmd.2015.08.005

    Article  PubMed  Google Scholar 

  33. Bish LT, Morine K, Sleeper MM, Sanmiguel J, Wu D, Gao G, Wilson JM, Sweeney HL (2008) Adeno-associated virus (AAV) serotype 9 provides global cardiac gene transfer superior to AAV1, AAV6, AAV7, and AAV8 in the mouse and rat. Hum Gene Ther 19(12):1359–1368. https://doi.org/10.1089/hum.2008.123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Levine BA, Moir AJ, Patchell VB, Perry SV (1992) Binding sites involved in the interaction of actin with the N-terminal region of dystrophin. FEBS Lett 298(1):44–48

    Article  CAS  Google Scholar 

  35. Amann KJ, Renley BA, Ervasti JM (1998) A cluster of basic repeats in the dystrophin rod domain binds F-actin through an electrostatic interaction. J Biol Chem 273(43):28419–28423

    Article  CAS  Google Scholar 

  36. Norwood FL, Sutherland-Smith AJ, Keep NH, Kendrick-Jones J (2000) The structure of the N-terminal actin-binding domain of human dystrophin and how mutations in this domain may cause Duchenne or Becker muscular dystrophy. Structure 8(5):481–491

    Article  CAS  Google Scholar 

  37. Rybakova IN, Humston JL, Sonnemann KJ, Ervasti JM (2006) Dystrophin and utrophin bind actin through distinct modes of contact. J Biol Chem 281(15):9996–10001. https://doi.org/10.1074/jbc.M513121200

    Article  CAS  PubMed  Google Scholar 

  38. Henderson DM, Lin AY, Thomas DD, Ervasti JM (2012) The carboxy-terminal third of dystrophin enhances actin binding activity. J Mol Biol 416(3):414–424. https://doi.org/10.1016/j.jmb.2011.12.040

    Article  CAS  PubMed  Google Scholar 

  39. Lin AY, Prochniewicz E, Henderson DM, Li B, Ervasti JM, Thomas DD (2012) Impacts of dystrophin and utrophin domains on actin structural dynamics: implications for therapeutic design. J Mol Biol 420(1–2):87–98. https://doi.org/10.1016/j.jmb.2012.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Massourides E, Polentes J, Mangeot PE, Mournetas V, Nectoux J, Deburgrave N, Nusbaum P, Leturcq F, Popplewell L, Dickson G, Wein N, Flanigan KM, Peschanski M, Chelly J, Pinset C (2015) Dp412e: a novel human embryonic dystrophin isoform induced by BMP4 in early differentiated cells. Skelet Muscle 5:40. https://doi.org/10.1186/s13395-015-0062-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin M. Flanigan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wein, N., Flanigan, K.M. (2019). Alternate Translational Initiation of Dystrophin: A Novel Therapeutic Approach. In: Duan, D., Mendell, J. (eds) Muscle Gene Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-03095-7_21

Download citation

Publish with us

Policies and ethics