Skip to main content

Polar Ice Sheet Flow Models

  • Chapter
  • First Online:
  • 490 Accesses

Part of the book series: GeoPlanet: Earth and Planetary Sciences ((GEPS))

Abstract

In this chapter, the flow of grounded ice sheets on geophysical scales is investigated. Two ice flow configurations are considered: plane and radially-symmetric. Assuming that ice viscosities depend on local temperature, strain-rate and current strength of anisotropy of the material, computational models have been developed to solve the system of equations governing the flow of a large, gravity-driven, polythermal polar ice sheet. The plane flow problem is solved by a finite-element method, whereas the radially-symmetric problem is solved by applying a method of asymptotic expansions in a small parameter defining the ratio of an ice sheet’s thickness to its lateral span. The results of numerical simulations illustrate the effect of ice anisotropy on both the free-surface profile and the velocity field in a polar ice sheet. In addition, the influence of the bed topography features on the overall flow of an ice sheet is examined. The chapter is complemented with the presentation of results showing the effects of the dynamic recrystallization process on the flow of a polar ice sheet.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bargmann S, Seddik H, Greve R (2012) Computational modeling of flow-induced anisotropy of polar ice for the EDML deep drilling site, Antarctica: the effect of rotation recrystallization and grain boundary migration. Int J Numer Anal Meth Geomech 36(7):892–917. https://doi.org/10.1012/nag.1034

    Article  Google Scholar 

  • Chorin AJ (1967) A numerical method for solving incompressible viscous flow problems. J Comp Phys 2(1):12–26

    Article  Google Scholar 

  • Chorin AJ (1968) Numerical solution of the Navier-Stokes equations. Math Comp 22(104):745–762

    Article  Google Scholar 

  • Cliffe KA, Morland LW (2000) Full and reduced model solutions of steady axi-symmetric ice sheet flow over small and large bed topography slopes. Continuum Mech Thermodyn 12(3):195–216

    Article  Google Scholar 

  • Cliffe KA, Morland LW (2001) A thermo-mechanically coupled test case for axi-symmetric ice sheet flow. Continuum Mech Thermodyn 13(2):135–148. https://doi.org/10.1007/s001610100047

    Article  Google Scholar 

  • Cliffe KA, Morland LW (2002) Full and reduced model solutions of steady axi-symmetric ice sheet flow over bed topography with moderate slopes. Continuum Mech Thermodyn 14(2):149–164. https://doi.org/10.1007/s001610100059

    Article  Google Scholar 

  • Cliffe KA, Morland LW (2004) Full and reduced model solutions of unsteady axi-symmetric ice sheet flow over a flat bed. Continuum Mech Thermodyn 16(5):481–494. https://doi.org/10.1007/s00161-004-0175-3

    Article  Google Scholar 

  • Dahl-Jensen D (1989) Steady thermomechanical flow along two-dimensional flow lines in large grounded ice sheets. J Geophys Res 94(B8):10355–10362

    Article  Google Scholar 

  • Drăghicescu A (2001) Steady plane nonlinearly viscous flow of ice sheets on beds with moderate slope topography. Continuum Mech Thermodyn 13(6):421–438

    Article  Google Scholar 

  • Fabre A, Letreguilly A, Ritz C, Mangeney A (1995) Greenland under changing climate: sensitivity experiments with a new three-dimensional ice-sheet model. Ann Glaciol 21:1–7

    Article  Google Scholar 

  • Fowler AC, Larson DA (1978) On the flow of polythermal glaciers. I. Model and preliminary analysis. Proc R Soc Lond A 363(1713):217–242

    Article  Google Scholar 

  • Gillet-Chaulet F, Gagliardini O, Meyssonnier J, Montagnat M, Castelnau O (2005) A user-friendly anisotropic flow law for ice-sheet modelling. J Glaciol 51(172):3–14

    Article  Google Scholar 

  • Gillet-Chaulet F, Hindmarsh RCA (2011) Flow at ice-divide triple junctions: 1. Three-dimensional full-Stokes modeling. J Geophys Res 116(F02023). https://doi.org/10.1029/2009JF001611

  • Greve R, Blatter H (2009) Dynamics of ice sheets and glaciers. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Gundestrup NS, Dahl-Jensen D, Johnsen SJ, Rossi A (1993) Bore-hole survey at dome GRIP 1991. Cold Reg Sci Technol 21(4):399–402

    Article  Google Scholar 

  • Hanson B (1995) A fully three-dimensional finite-element model applied to velocities on Storglaciären. Sweden J Glaciol 41(137):91–102

    Article  Google Scholar 

  • Herterich K (1988) A three-dimensional model of the Antarctic ice sheet. Ann Glaciol 11:32–35

    Article  Google Scholar 

  • Hindmarsh RCA (2004) A numerical comparison of approximations to the Stokes equations used in ice sheet and glacier modeling. J Geophys Res 109(F1):F01012. https://doi.org/10.1029/2003JF000065

    Article  Google Scholar 

  • Hindmarsh RCA, Morland LW, Boulton GS, Hutter K (1987) The unsteady plane flow of ice-sheets, a parabolic problem with two moving boundaries. Geophys Astrophys Fluid Dyn 39(3):183–225

    Article  Google Scholar 

  • Hirsch C (1992) Numerical computation of internal and external flows, vol 2. Wiley, Chichester

    Google Scholar 

  • Hodge SM (1985) Two-dimensional, time-dependent modeling of an arbitrarily shaped ice mass with the finite element technique. J Glaciol 31(109):350–359

    Article  Google Scholar 

  • Hooke RL, Raymond CF, Hotchkiss RL, Gustafson RJ (1979) Calculations of velocity and temperature in a polar glacier using the finite-element method. J Glaciol 24(90):131–145

    Article  Google Scholar 

  • Hutter K (1981) The effect of longitudinal strain on the shear stress of an ice sheet: in defence of using stretched coordinates. J Glaciol 27(95):39–56

    Article  Google Scholar 

  • Hutter K. (1983) Theoretical glaciology. Material science of ice and the mechanics of glaciers and ice sheets. Reidel, Dordrecht

    Google Scholar 

  • Hutter K, Yakowitz S, Szidarovszky F (1986) A numerical study of plane ice sheet flow. J Glaciol 32(111):139–160

    Article  Google Scholar 

  • Huybrechts P (1990) A 3-D model for the Antarctic ice sheet: a sensitivity study on the glacial-interglacial contrast. Climate Dyn 5(2):79–92

    Article  Google Scholar 

  • Hvidberg CS (1996) Steady-state thermomechanical modelling of ice flow near the centre of large ice sheets with the finite-element technique. Ann Glaciol 23:116–123

    Article  Google Scholar 

  • Ma Y, Gagliardini O, Ritz C, Gillet-Chaulet F, Durand G, Montagnat M (2010) Enhancement factors for grounded ice and ice shelves inferred from an anisotropic ice-flow model. J Glaciol 56(199):805–812

    Article  Google Scholar 

  • Mangeney A, Califano F (1998) The shallow ice approximation for anisotropic ice: formulation and limits. J Geophys Res 103(B1):691–705

    Article  Google Scholar 

  • Mangeney A, Califano F, Castelnau O (1996) Isothermal flow of an anisotropic ice sheet in the vicinity of an ice divide. J Geophys Res 101(B12):28189–28204

    Article  Google Scholar 

  • Mangeney A, Califano F, Hutter K (1997) A numerical study of anisotropic, low Reynolds number, free surface flow for ice sheet modeling. J Geophys Res 102(B10):22749–22764

    Article  Google Scholar 

  • Morland LW (1984) Thermomechanical balances of ice sheet flows. Geophys Astrophys Fluid Dyn 29:237–266

    Article  Google Scholar 

  • Morland LW (1997) Radially symmetric ice sheet flow. Phil Trans R Soc Lond A 355:1873–1904

    Article  Google Scholar 

  • Morland LW (2000) Steady plane isothermal linearly viscous flow of ice sheets on beds with moderate-slope topography. Proc R Soc Lond A 456(1999):1711–1739

    Article  Google Scholar 

  • Morland LW (2001) Influence of bed topography on steady plane ice sheet flow. In: Straughan B, Greve R, Ehrentraut H, Wang Y (eds) Continuum mechanics and applications in geophysics and the environment. Springer, Berlin, pp 276–304

    Chapter  Google Scholar 

  • Morland LW (2009) A three-dimensional ice-sheet flow solution. J Glaciol 55(191):473–480. https://doi.org/10.3189/002214309788816588

    Article  Google Scholar 

  • Morland LW, Drăghicescu A (1998) Steady plane isothermal linearly viscous flow of ice sheets on beds with large slope topography. Environmetrics 9:459–492

    Article  Google Scholar 

  • Morland LW, Johnson IR (1980) Steady motion of ice sheets. J Glaciol 25(92):229–246

    Article  Google Scholar 

  • Morland LW, Staroszczyk R (2006) Steady radial ice sheet flow with fabric evolution. J Glaciol 52(177):267–280. https://doi.org/10.3189/172756506781828719

    Article  Google Scholar 

  • Pan W, Tartakovsky AM, Monaghan JJ (2013) Smoothed particle hydrodynamics non-newtonian model for ice-sheet and ice-shelf dynamics. J Comput Phys 242:828–842. https://doi.org/10.1016/j.jcp.2012.10.027

    Article  Google Scholar 

  • Press WH, Teukolsky SA, Vettering WT, Flannery BP (2001) Numerical recipes in Fortran 77, vol. 1, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Raymond CF (1983) Deformation in the vicinity of ice divides. J Glaciol 29(103):357–373

    Article  Google Scholar 

  • Schoof C (2003) The effect of basal topography on ice sheet dynamics. Continuum Mech Thermodyn 15(3):295–307

    Article  Google Scholar 

  • Seddik H, Greve R, Zwinger T, Gillet-Chaulet F, Gagliardini O (2012) Simulations of the Greenland ice sheet 100 years into the future with the full Stokes model Elmer/Ice J Glaciol 58(209):427–440. https://doi.org/10.3189/2012JoG11J177

    Article  Google Scholar 

  • Staroszczyk R (2003) Plane ice sheet flow with evolving and recrystallising fabric. Ann Glaciol 37(1):247–251. https://doi.org/10.3189/172756403781815834

    Article  Google Scholar 

  • Staroszczyk R (2004) Constitutive modelling of creep induced anisotropy of ice. IBW PAN Publishing House, Gdańsk

    Google Scholar 

  • Staroszczyk R (2006) Axi-symmetric ice sheet flow with evolving anisotropic fabric. Bull Pol Ac Tech 54(4):419–428

    Google Scholar 

  • Staroszczyk R, Morland LW (2000) Plane ice-sheet flow with evolving orthotropic fabric. Ann Glaciol 30:93–101

    Article  Google Scholar 

  • Zienkiewicz OC, Taylor RL, Nithiarasu P (2005a) The finite element method for fluid dynamics, 6th edn. Elsevier Butterworth-Heinemann, Amsterdam

    Google Scholar 

  • Zienkiewicz OC, Taylor RL, Zhu JZ (2005b) The finite element method: its basis and fundamentals, 6th edn. Elsevier Butterworth-Heinemann, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryszard Staroszczyk .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Staroszczyk, R. (2019). Polar Ice Sheet Flow Models. In: Ice Mechanics for Geophysical and Civil Engineering Applications. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-03038-4_8

Download citation

Publish with us

Policies and ethics