Computer Vision for Supporting Fashion Creative Processes

  • Luca Donati
  • Eleonora IottiEmail author
  • Andrea Prati
Part of the Studies in Computational Intelligence book series (SCI, volume 804)


Computer vision techniques are powerful tools to support and enhance creative workflows in fashion industries. In many cases, designer sketches and drawings, made with pen or pencil on raw paper, are the starting point of a fashion workflow. Then, such hand-drawn sketches must be imported into a software, to convert the prototype into a real-world product. This leads to a first important problem, namely, the automatic vectorization of sketches. Moreover, the various outcomes of all creative processes consist of a large number of images, which depict a plethora of products, from clothing to footwear. Recognizing product characteristics and classifying them properly is crucial in order to avoid duplicates and support marketing campaigns. Each feature could eventually require a different method, spacing from segmentation, image retrieval, to machine learning techniques, such as deep learning. Some state-of-the-art techniques and a novel proposal for line extraction and thinning, applied to fashion sketches, are described. Newly-developed methods are presented and their effectiveness in the recognition of features is discussed.



This work is funded by Adidas AGTM. We are really thankful to Adidas for this opportunity.


  1. 1.
    Dori, D., Liu, W.: Sparse pixel vectorization: an algorithm and its performance evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 21(3), 202–215 (1999)CrossRefGoogle Scholar
  2. 2.
    Song, J., Su, F., Tai, C.L., Cai, S.: An object-oriented progressive-simplification-based vectorization system for engineering drawings: model, algorithm, and performance. IEEE Trans. Pattern Anal. Mach. Intell. 24(8), 1048–1060 (2002)CrossRefGoogle Scholar
  3. 3.
    Duda, R.O., Hart, P.E.: Use of the hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972)CrossRefGoogle Scholar
  4. 4.
    Noris, G., Hornung, A., Sumner, R.W., Simmons, M., Gross, M.: Topology-driven vectorization of clean line drawings. ACM Trans. Gr. (TOG) 32(1), 4:1–4:11 (2013)CrossRefGoogle Scholar
  5. 5.
    Favreau, J.D., Lafarge, F., Bousseau, A.: Fidelity vs. simplicity: a global approach to line drawing vectorization. ACM Trans. Gr. (TOG) 35(4), 120:1–120:10 (2016)CrossRefGoogle Scholar
  6. 6.
    Hilaire, X., Tombre, K.: Robust and accurate vectorization of line drawings. IEEE Trans. Pattern Anal. Mach. Intell. 28(6), 890–904 (2006)CrossRefGoogle Scholar
  7. 7.
    Kang, H., Lee, S., Chui, C.K.: Coherent line drawing. In: Proceedings of the 5th International Symposium on Non-Photorealistic Animation and Rendering (NPAR ’07). pp. 43–50. ACM (2007)Google Scholar
  8. 8.
    Zhang, T., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun. ACM 27(3), 236–239 (1984)CrossRefGoogle Scholar
  9. 9.
    Saeed, K., Tabedzki, M., Rybnik, M., Adamski, M.: K3M: A universal algorithm for image skeletonization and a review of thinning techniques. Int. J. Appl. Math. Comput. Sci. 20(2), 317–335 (2010)CrossRefGoogle Scholar
  10. 10.
    Chen, Y.S.: The use of hidden deletable pixel detection to obtain bias-reduced skeletons in parallel thinning. In: Proceedings of the 13th International Conference on Pattern Recognition, vol. 2, pp. 91–95. IEEE (1996)Google Scholar
  11. 11.
    Bessmeltsev, M., Solomon, J.: Vectorization of line drawings via polyvector fields. arXiv:1801.01922 (2018)
  12. 12.
    Sangkloy, P., Burnell, N., Ham, C., Hays, J.: The sketchy database: learning to retrieve badly drawn bunnies. ACM Trans. Gr. 35(4), 119:1–119:12 (2016)CrossRefGoogle Scholar
  13. 13.
    Jing, Y., Liu, D., Kislyuk, D., Zhai, A., Xu, J., Donahue, J., Tavel, S.: Visual search at Pinterest. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1889–1898. ACM (2015)Google Scholar
  14. 14.
    Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recogn. 26(9), 1277–1294 (1993)CrossRefGoogle Scholar
  15. 15.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)CrossRefGoogle Scholar
  16. 16.
    Smeulders, A.W., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1349–1380 (2000)CrossRefGoogle Scholar
  17. 17.
    Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), pp. 779–788. IEEE (2016)Google Scholar
  18. 18.
    Dai, J., Li, Y., He, K., Sun, J.: R-FCN: Object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, pp. 379–387 (2016)Google Scholar
  19. 19.
    Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the 28th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015), pp. 1–9. IEEE (2015)Google Scholar
  20. 20.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)
  21. 21.
    Schneider, P.J.: An algorithm for automatically fitting digitized curves. In: Glassner, A.S. (ed.) Graphics Gems, pp. 612–626. Academic Press Professional, Inc. (1990)Google Scholar
  22. 22.
    Bo, P., Luo, G., Wang, K.: A graph-based method for fitting planar b-spline curves with intersections. J. Comput. Des. Eng. 3(1), 14–23 (2016)Google Scholar
  23. 23.
    Bartolo, A., Camilleri, K.P., Fabri, S.G., Borg, J.C., Farrugia, P.J.: Scribbles to vectors: preparation of scribble drawings for CAD interpretation. In: Proceedings of the 4th Eurographics Workshop on Sketch-based Interfaces and Modeling, pp. 123–130. ACM (2007)Google Scholar
  24. 24.
    Simo-Serra, E., Iizuka, S., Sasaki, K., Ishikawa, H.: Learning to simplify: Fully convolutional networks for rough sketch cleanup. ACM Trans. Gr. (SIGGRAPH) 35(4) (2016)CrossRefGoogle Scholar
  25. 25.
    Chen, J., Guennebaud, G., Barla, P., Granier, X.: Non-oriented MLS gradient fields. In: Computer Graphics Forum, vol. 32, pp. 98–109. Wiley Online Library (2013)Google Scholar
  26. 26.
    Donati, L., Cesano, S., Prati, A.: An accurate system for fashion hand-drawn sketches vectorization. In: Proceedings of the 16th IEEE International Conference on Computer Vision Workshops (ICCVW) (2017)Google Scholar
  27. 27.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2001), vol. 1, pp. I511–I518. IEEE (2001)Google Scholar
  28. 28.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the 2005 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893. IEEE (2005)Google Scholar
  29. 29.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the 7th IEEE International Conference on Computer Vision (ICCV), vol. 2, pp. 1150–1157. IEEE (1999)Google Scholar
  30. 30.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  31. 31.
    Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv:1312.6229 (2013)
  32. 32.
    Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the 27th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014), pp. 580–587. IEEE (2014)Google Scholar
  33. 33.
    Girshick, R.: Fast R-CNN. In: Proceedings of the 15th IEEE International Conference on Computer Vision (ICCV 2015), pp. 1440–1448. IEEE (2015)Google Scholar
  34. 34.
    Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)Google Scholar
  35. 35.
    Redmon, J., Farhadi, A.: YOLO9000: Better, faster, stronger. In: Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), pp. 6517–6525. IEEE (2017)Google Scholar
  36. 36.
    Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: SSD: Single shot multibox detector. In: Proceedings of 14th the European Conference on Computer Vision (ECCV), pp. 21–37. Springer (2016)Google Scholar
  37. 37.
    Pearson, K.: Note on regression and inheritance in the case of two parents. Proc. R. S. London 58, 240–242 (1895)CrossRefGoogle Scholar
  38. 38.
    Otsu, N.: A threshold selection method from gray-level histograms. Automatica 11(285–296), 23–27 (1975)Google Scholar
  39. 39.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Pearson Education (2007)Google Scholar
  40. 40.
    Suzuki, S., Keiichi, A.: Topological structural analysis of digitized binary images by border following. Comput. Vis. Gr. Image Process. 30(1), 32–46 (1985)CrossRefGoogle Scholar
  41. 41.
    Han, J.H., Poston, T.: Chord-to-point distance accumulation and planar curvature: A new approach to discrete curvature. Pattern Recogn. Lett. 22(10), 1133–1144 (2001)CrossRefGoogle Scholar
  42. 42.
    Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211–252 (2015)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Perez, L., Wang, J.: The effectiveness of data augmentation in image classification using deep learning. arXiv:1712.04621 (2017)
  44. 44.
    Sharma, G., Wu, W., Dalal, E.N.: The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Res. Appl. 30(1), 21–30 (2005)CrossRefGoogle Scholar
  45. 45.
    Van De Weijer, J., Schmid, C., Verbeek, J., Larlus, D.: Learning color names for real-world applications. IEEE Trans. Image Process. 18(7), 1512–1523 (2009)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Adams, R., Bischof, L.: Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 641–647 (1994)CrossRefGoogle Scholar
  47. 47.
    Li, B., Lu, Y., Godil, A., Schreck, T., Aono, M., Johan, H., Saavedra, J.M., Tashiro, S.: SHREC’13 track: large scale sketch-based 3D shape retrieval. In: Proceedings of the 6th Eurographics Workshop on 3D Object Retrieval (3DOR 2013), pp. 89–96 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.IMP Lab, Dipartimento di Ingegneria e ArchitetturaUniversità di ParmaParmaItaly

Personalised recommendations