Skip to main content

The Special Case of High-Altitude Headache

  • Chapter
  • First Online:
Placebos and Nocebos in Headaches

Part of the book series: Headache ((HEAD))


Placebo responses have been widely studied in the clinical context and across a variety of different systems. Recent research has shown that placebos and nocebos induce powerful psychological effects that can change the physiology of different body functions and that these changes follow very similar pathways as those induced by drugs. For example, placebo and nocebo effects have been shown to affect both the clinical symptoms and the related biochemical and physiological changes of high-altitude hypoxia headache, where positive or negative expectations lead to the suppression or enhancement of the cyclooxygenase (COX)-prostaglandin (PG) pathway which, in turn, induces pain amelioration or worsening, respectively. High-altitude headache is one of the core neurological hallmarks of the acute mountain sickness (AMS) syndrome and is associated with the ascent to high altitudes and the concomitant drop in atmospheric oxygen pressure. Cellular hypoxia due to reduced barometric pressure seems to be the common final pathway for headache as altitude increases. Within this context, the high-altitude or hypobaric hypoxia headache model represents an extremely valuable opportunity to investigate placebo effects at high altitude, as it represents a borderline condition between the clinical and the experimental setting and allows to induce a clinical condition by bringing healthy subjects from a region of high oxygen pressure (sea level, 159 mmHg) to a region of lower oxygen pressure (high altitude, e.g., 3500 m, 102 mmHg), ruling out ethical constraints. Interestingly, placebo and nocebo research relying on the hypoxia headache model has shown how positive or negative psychosocial cues represent crucial triggers for the decrease and increase in perceived headache and salivary COX products, respectively, suggesting how placebo and nocebo responses are in all respects both psychological and biological phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. Bartsch P, Baumgartner RW, Waber U, Maggiorini M, Oelz O. Comparison of carbondioxide-enriched, oxygen-enriched, and normal air in treatment of acute mountain sickness. Lancet. 1990;336:772–5.

    Article  CAS  Google Scholar 

  2. Benedetti F. Perspective placebo effects: from the neurobiological paradigm to translational implications. Neuron. 2014;84:623–37.

    Article  CAS  Google Scholar 

  3. Benedetti F, Dogue S. Different placebos, different mechanisms, different outcomes: lessons for clinical trials. PLoS One. 2015;10(11):e0140967.

    Article  Google Scholar 

  4. Benedetti F, Durando J, Giudetti L, Pampallona A, Vighetti S. High altitude headache: the effects of real versus sham oxygen administration. Pain. 2015;156:2326–36.

    Article  CAS  Google Scholar 

  5. Benedetti F, Durando J, Vighetti S. Nocebo and placebo modulation of hypobaric hypoxia headache involves the cyclooxygenase-prostaglandins pathway. Pain. 2014;155(5):921–8.

    Article  CAS  Google Scholar 

  6. Burtscher M, Likar R, Nachbauer W, Philadelphy M. Aspirin for prophylaxis against headache at high altitudes: randomised, double blind, placebo controlled trial. Br Med J. 1998;316:1057–8.

    Article  CAS  Google Scholar 

  7. Busse R, Fosterman U, Matsuda H, Pohl U. The role of prostaglandins in the endothelium-mediated vasodilatory response to hypoxia. Pflugers Arch. 1984;401:77–83.

    Article  CAS  Google Scholar 

  8. Davis RJ, Murdoch CE, Ali M, Purbrick S, Ravid R, Baxter GS, et al. EP4 prostanoid receptor-mediated vasodilation of human middle cerebral arteries. Br J Pharmacol. 2004;141:580–5.

    Article  CAS  Google Scholar 

  9. Fredericks KT, Liu Y, Rusch NJ, Lombard JH. Role of endothelium and arterial K+ channels in mediating hypoxic dilation of middle cerebral arteries. Am J Physiol. 1994;267:H580–6.

    Google Scholar 

  10. Imray C, Wright A, Subudhi A, Roach R. Acute mountain sickness: pathophysiology, prevention and treatment. Prog Cardiovasc Dis. 2010;52:467–84.

    Article  CAS  Google Scholar 

  11. International Society for Mountain Medicine. Non-Physician Altitude Tutorial. 2005. Archived from the original on 2011-06-06. Retrieved 22 Dec 2005.

    Google Scholar 

  12. Kawabata A. Prostaglandin E2 and pain—an update. Biol Pharm Bull. 2011;34:1170–3.

    Article  CAS  Google Scholar 

  13. Leaf DE, Goldfarb DS. Mechanisms of action of acetazolamide in the prophylaxis and treatment of acute mountain sickness. J Appl Physiol. 2007;102(1):313–22.

    Google Scholar 

  14. Marmura MJ, Hernandez PB. High-altitude headache. Curr Pain Headache Rep. 2015;19(5):483.

    Article  Google Scholar 

  15. Messina EJ, Sun D, Koller A, Wolin MS, Kaley G. Role of endothelium-derived prostaglandins in hypoxia elicited arteriolar dilation in rat skeletal muscle. Circ Res. 1992;71:790–6.

    Article  CAS  Google Scholar 

  16. Porcelli MJ, Gugelchuk GM. A trek to the top: a review of acute mountain sickness. J Am Osteopath Assoc. 1995;95:718–20.

    Article  CAS  Google Scholar 

  17. Ray CJ, Abbas MR, Coney AM, Marshall JM. Interactions of adenosine, prostaglandins and nitric oxide in hypoxia-induced vasodilatation: in vivo and in nitro studies. J Physiol. 2002;544:195–209.

    Article  CAS  Google Scholar 

  18. Richalet JP, Hornych A, Rathat C, Aumont J, Larmignat P, Rémy P. Plasma prostaglandins, leukotrienes and thromboxane in acute high altitude hypoxia. Respir Physiol. 1991;85:205–15.

    Article  CAS  Google Scholar 

  19. Sutton JR, Coates G, Houston CS, Oelz O. The Lake Louise consensus on the definition and quantification of altitude illness. In: Sutton JR, Coates G, Houston CS, editors. Hypoxia and mountain medicine. Burlington: Queen City Printers; 1992. p. 327–30.

    Google Scholar 

  20. West JB. The physiologic basis of high-altitude diseases. Ann Intern Med. 2004;141:789–800.

    Article  Google Scholar 

  21. Wilson MH, Newman S, Imray CS. The cerebral effects of ascent to high altitudes. Lancet Neurol. 2009;8:175–91.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Fabrizio Benedetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barbiani, D., Camerone, E., Benedetti, F. (2019). The Special Case of High-Altitude Headache. In: Mitsikostas, D., Benedetti, F. (eds) Placebos and Nocebos in Headaches. Headache. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02975-3

  • Online ISBN: 978-3-030-02976-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics