Skip to main content

Multimodal Optoacoustic Imaging

  • Chapter
  • First Online:
Book cover Image Fusion in Preclinical Applications

Abstract

Optical imaging is one of the oldest and most frequently used imaging techniques. Even though the first optical imaging device, the light microscope, has been invented around 1590, the human eye has served the same purpose for centuries before that. With the advent of new technologies, such as efficient electronics, powerful lasers, sensitive detectors, and high-precision optics, it became possible to improve the quality of the acquired images and to leverage physical phenomena that were previously inaccessible. For example, the introduction of femtosecond lasers enabled the exploitation of nonlinear optical phenomena, including higher harmonic generation or two-photon absorption, for high-resolution imaging. Similarly, with advances in ultrasound detection technology, phenomena such as the optoacoustic (photoacoustic) effect became effectively utilizable, which is the centerpiece of this chapter. With its resurrection in 1981, optoacoustics became a mainstream noninvasive imaging technology. The strength of optoacoustic imaging is that it enables biomedical imaging at multiple scales, from macroscopy all the way down to microscopy. Additionally, it readily allows for the combination with other imaging modalities. Based on the optoacoustic phenomenon, multiple imaging systems were introduced in the last decades, and this technology has been used for a multitude of applications, such as neuroimaging and cancer research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although the word “tomography” implies the use of mathematical methods for image reconstruction, in the context of imaging, it also generally refers to whole-body imaging at a macroscopic scale. Hence, we will follow this terminological tradition here and use “macroscopy” and “tomography” synonymously.

References

  1. Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods. 2010;7(8):603–14.

    Article  CAS  PubMed  Google Scholar 

  2. Ale A, Ermolayev V, Herzog E, Cohrs C, de Angelis MH, Ntziachristos V. FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography–X-ray computed tomography. Nat Methods. 2012;9(6):615–20.

    Article  CAS  PubMed  Google Scholar 

  3. Ntziachristos V, Yodh AG, Schnall M, Chance B. Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc Natl Acad Sci U S A. 2000;97(6):2767–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bowen T. Radiation-induced thermoacoustic soft tissue imaging. In: IEEE Ultrasonic Symposium; 1981.

    Google Scholar 

  5. Wang LV, Wu H-I. Biomedical optics: principles and imaging. Hoboken, NJ: Wiley Interscience; 2007.

    Google Scholar 

  6. Diebold GJ, Sun T, Khan MI. Photoacoustic monopole radiation in one, two, and three dimensions. Phys Rev Lett. 1991;67(24):3384–7.

    Article  CAS  PubMed  Google Scholar 

  7. Westervelt PJ, Larson RS. Laser-excited broadside array. J Acoust Soc Am. 1973;54(1):121–2.

    Article  Google Scholar 

  8. Bossy E, Gigan S. Photoacoustics with coherent light. Photoacoustics. 2016;4(1):22–35.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Khan MI, Diebold GJ. The photoacoustic effect generated by an isotropic solid sphere. Ultrasonics. 1995;33(4):265–9.

    Article  Google Scholar 

  10. Khan MI, Diebold GJ. The photoacoustic effect generated by laser irradiation of an isotropic solid cylinder. Ultrasonics. 1996;34(1):19–24.

    Article  CAS  Google Scholar 

  11. Treeby BE, Cox BT, Zhang EZ, Patch SK, Beard PC. Measurement of broadband temperature-dependent ultrasonic attenuation and dispersion using photoacoustics. IEEE Trans Ultrason Ferroelectr Freq Control. 2009;56(8):1666–76.

    Article  PubMed  Google Scholar 

  12. Deán-Ben XL, Razansky D, Ntziachristos V. The effects of acoustic attenuation in optoacoustic signals. Phys Med Biol. 2011;56(18):6129–48.

    Article  PubMed  Google Scholar 

  13. Szabo TL. Diagnostic ultrasound imaging: inside out. Amsterdam: Academic Press; 2004.

    Google Scholar 

  14. Rosenthal A, Ntziachristos V, Razansky D. Acoustic inversion in optoacoustic tomography: a review. Curr Med Imaging Rev. 2013;9:318–36.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Xu M, Wang LV. Universal back-projection algorithm for photoacoustic computed tomography. Phys Rev E. 2005;71:016706.

    Article  CAS  Google Scholar 

  16. Tomography—Wikipedia [Online]. Available: https://en.wikipedia.org/wiki/Tomography. Accessed 4 Sep 2016.

  17. Buehler A, Kacprowicz M, Taruttis A, Ntziachristos V. Real-time handheld multispectral optoacoustic imaging. Opt Lett. 2013;38(9):1404–6.

    Article  CAS  PubMed  Google Scholar 

  18. Deán-Ben XL, Razansky D. Adding fifth dimension to optoacoustic imaging: volumetric time-resolved spectrally enriched tomography. Light Sci Appl. 2014;3(1):e137.

    Article  CAS  Google Scholar 

  19. Laufer J, Johnson P, Zhang E, Treeby B, Cox B, Pedley B, Beard P. In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy. J Biomed Opt. 2012;17(5):56016.

    Article  CAS  Google Scholar 

  20. Herzog E, Taruttis A, Beziere N, Lutich AA, Razansky D. Optical imaging of cancer heterogeneity with multispectral. Radiology. 2012;263(2):461–8.

    Article  PubMed  Google Scholar 

  21. Beziere N, Schacky C, Kosanke Y, Kimm M, Nunes A, Licha K, Aichler M, Walch A, Rummeny EJ, Ntziachristos V, et al. Optoacoustic imaging and staging of inflammation in a murine model of arthritis. Arthritis Rheumatol. 2014;66(8):2071–8.

    Article  CAS  PubMed  Google Scholar 

  22. Taruttis A, Wildgruber M, Kosanke K, Beziere N, Licha K, Haag R, Aichler M, Walch A, Rummeny E, Ntziachristos V. Multispectral optoacoustic tomography of myocardial infarction. Photoacoustics. 2013;1(1):3–8.

    Article  PubMed  Google Scholar 

  23. Taruttis A, Ntziachristos V. Advances in real-time multispectral optoacoustic imaging and its applications. Nat Photon. 2015;9(4):219–27.

    Article  CAS  Google Scholar 

  24. Olefir I, Merčep E, Burton NC, Ovsepian SV, Ntziachristos V. Hybrid multispectral optoacoustic and ultrasound tomography for morphological and physiological brain imaging. J Biomed Opt. 2016;21(8):86005.

    Article  PubMed  Google Scholar 

  25. Nasiriavanaki M, Xia J, Wan H, Bauer AQ, Culver JP, Wang LV. High-resolution photoacoustic tomography of resting-state functional connectivity in the mouse brain. Proc Natl Acad Sci U S A. 2013;8943:9–13.

    Google Scholar 

  26. Gottschalk S, Fehm TF, Deán-Ben XL, Tsytsarev V, Razansky D. Correlation between volumetric oxygenation responses and electrophysiology identifies deep thalamocortical activity during epileptic seizures. Neurophotonics. 2017;4(1):11007.

    Article  Google Scholar 

  27. Tzoumas S, Nunes A, Olefir I, Stangl S, Symvoulidis P, Glasl S, Bayer C, Multhoff G, Ntziachristos V. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues. Nat Commun. 2016;7:12121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bohndiek SE, Sasportas LS, Machtaler S, Jokerst JV, Hori S, Gambhir SS. Photoacoustic tomography detects early vessel regression and normalization during ovarian tumor response to the antiangiogenic therapy trebananib. J Nucl Med. 2015;56(12):1942–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jathoul AP, Laufer J, Ogunlade O, Treeby B, Cox B, Zhang E, Johnson P, Pizzey AR, Philip B, Marafioti T, et al. Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter. Nat Photon. 2015;9:239–46.

    Article  CAS  Google Scholar 

  30. Razansky D, Buehler A, Ntziachristos V. Volumetric real-time multispectral optoacoustic tomography of biomarkers. Nat Protoc. 2011;6(8):1121–9.

    Article  CAS  PubMed  Google Scholar 

  31. Bauer AQ, Nothdurft RE, Erpelding TN, Wang LV, Culver JP. Quantitative photoacoustic imaging: correcting for heterogeneous light fluence distributions using diffuse optical tomography. J Biomed Opt. 2011;16(9):96016.

    Article  Google Scholar 

  32. Mercep E, Burton NC, Claussen J, Razansky D. Whole-body live mouse imaging by hybrid reflection-mode ultrasound and optoacoustic tomography. Opt Lett. 2015;40(20):4643–6.

    Article  PubMed  Google Scholar 

  33. Kircher M, La Zerda AD, Jokerst J, Zavaleta C. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat Med. 2012;18:829–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Omar M, Gateau J, Ntziachristos V. Raster-scan optoacoustic mesoscopy in the 25–125 MHz range. Opt Lett. 2013;38(14):2472–4.

    Article  PubMed  Google Scholar 

  35. Zhang HF, Maslov K, Stoica G, Wang LV. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat Biotechnol. 2006;24(7):848–51.

    Article  CAS  PubMed  Google Scholar 

  36. Estrada H, Turner J, Kneipp M, Razansky D. Real-time optoacoustic brain microscopy with hybrid optical and acoustic resolution. Laser Phys Lett. 2014;11(4):45601.

    Article  Google Scholar 

  37. Omar M, Soliman D, Gateau J, Ntziachristos V. Ultrawideband reflection-mode optoacoustic mesoscopy. Opt Lett. 2014;39(13):3911–4.

    Article  PubMed  Google Scholar 

  38. Omar M, Rebling J, Wicker K, Schmitt-Manderbach T, Schwarz M, Gateau J, López-Schier H, Mappes T, Ntziachristos V. Optical imaging of post-embryonic zebrafish using multi orientation raster scan optoacoustic mesoscopy. Light Sci Appl. 2017;6:e16186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chekkoury A, Gateau J, Driessen W, Symvoulidis P, Bézière N, Feuchtinger A, Walch A, Ntziachristos V. Optical mesoscopy without the scatter: broadband multispectral optoacoustic mesoscopy. Biomed Opt Express. 2015;6(9):3134–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chekkoury A, Nunes A, Gateau J, Symvoulidis P, Feuchtinger A, Beziere N, Ovsepian SV, Walch A, Ntziachristos V. High-resolution multispectral optoacoustic tomography of the vascularization and constitutive hypoxemia of cancerous tumors. Neoplasia. 2016;18(8):459–67.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Razansky D, Distel M, Vinegoni C, Ma R, Perrimon N, Köster RW, Ntziachristos V. Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo. Nat Photon. 2009;3(7):412–7.

    Article  CAS  Google Scholar 

  42. Cobbold RSC. Foundations of biomedical ultrasound. New York: Oxford University Press; 2006.

    Google Scholar 

  43. Yao J, Wang LV. Photoacoustic microscopy. Laser Photon Rev. 2014;7(5):1–36.

    Google Scholar 

  44. Omar M, Schwarz M, Soliman D, Symvoulidis P, Ntziachristos V. Pushing the optical imaging limits of cancer with multi-frequency-band raster-scan optoacoustic mesoscopy (RSOM). Neoplasia. 2015;17(2):208–14.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Li H, Dong B, Zhang Z, Zhang HF, Sun C. A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy. Sci Rep. 2014;4:4496.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Huang S-W, Chen S-L, Ling T, Maxwell A, O’Donnell M, Guo LJ, Ashkenazi S. Low-noise wideband ultrasound detection using polymer microring resonators. Appl Phys Lett. 2008;92(19):193509.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Wissmeyer G, Soliman D, Shnaiderman R, Rosenthal A, Ntziachristos V. All-optical optoacoustic microscope based on wideband pulse interferometry. Opt Lett. 2016;41(9):1953–6.

    Article  PubMed  Google Scholar 

  48. Maslov K, Zhang HF, Hu S, Wang LV. Optical-resolution photoacoustic microscopy for in vivo imaging of single capillaries. Opt Lett. 2008;33(9):929–31.

    Article  PubMed  Google Scholar 

  49. Tserevelakis GJ, Soliman D, Omar M, Ntziachristos V. Hybrid multiphoton and optoacoustic microscope. Opt Lett. 2014;39(7):1819–22.

    Article  PubMed  Google Scholar 

  50. Soliman D, Tserevelakis GJ, Omar M, Ntziachristos V. Combining microscopy with mesoscopy using optical and optoacoustic label-free modes. Sci Rep. 2015;5:12902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yao J, Wang L, Yang J-M, Maslov KI, Wong TTW, Li L, Huang C-H, Zou J, Wang LV. High-speed label-free functional photoacoustic microscopy of mouse brain in action. Nat Methods. 2015;12(5):407–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Seeger M, Karlas A, Soliman D, Pelisek J, Ntziachristos V. Multimodal optoacoustic and multiphoton microscopy of human carotid atheroma. Photoacoustics. 2016;4:102–11.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Shelton RL, Mattison SP, Applegate BE. Volumetric imaging of erythrocytes using label-free multiphoton photoacoustic microscopy. J Biophoton. 2014;7(10):834–40.

    Article  CAS  Google Scholar 

  54. Zhu L, Li L, Gao L, Wang LV. Multiview optical resolution photoacoustic microscopy. Optica. 2014;1(4):217–22.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang L, Maslov K, Yao J, Rao B, Wang LV. Fast voice-coil scanning optical-resolution photoacoustic microscopy. Opt Lett. 2011;36(2):139–41.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Song W, Xu Q, Zhang Y, Zhan Y, Zheng W, Song L. Fully integrated reflection-mode photoacoustic, two-photon, and second harmonic generation microscopy in vivo. Sci Rep. 2016;6:32240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tserevelakis GJ, Tsagkaraki M, Zacharakis G. Hybrid photoacoustic and optical imaging of pigments in vegetative tissues. J Microsc. 2016;263:300–6.

    Article  CAS  PubMed  Google Scholar 

  58. Wang Y, Maslov K, Kim C, Hu S, Wang LV. Integrated photoacoustic and fluorescence confocal microscopy. IEEE Trans Biomed Eng. 2010;57(10):2576–8.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Harrison T, Ranasinghesagara JC, Lu H, Mathewson K, Walsh A, Zemp RJ. Combined photoacoustic and ultrasound biomicroscopy. Opt. Express. 2009;17(24):22041–6.

    Article  CAS  PubMed  Google Scholar 

  60. Jiao S, Xie Z, Zhang HF, Puliafito CA. Simultaneous multimodal imaging with integrated photoacoustic microscopy and optical coherence tomography. Opt Lett. 2009;34(19):2961–3.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Yao J, Shcherbakova DM, Li C, Krumholz A, Lorca RA, Reinl E, England SK, Verkhusha VV, Wang LV. Reversibly switchable fluorescence microscopy with enhanced resolution and image contrast. J Biomed Opt. 2014;19:86018.

    Article  CAS  Google Scholar 

  62. Stiel AC, Deán-Ben XL, Jiang Y, Ntziachristos V, Razansky D, Westmeyer GG. High-contrast imaging of reversibly switchable fluorescent proteins via temporally unmixed multispectral optoacoustic tomography. Opt Lett. 2015;40(3):367–70.

    Article  CAS  PubMed  Google Scholar 

  63. Jiang Y, Sigmund F, Reber J, Deán-Ben XL, Glasl S, Kneipp M, Estrada H, Razansky D, Ntziachristos V, Westmeyer GG. Violacein as a genetically-controlled, enzymatically amplified and photobleaching-resistant chromophore for optoacoustic bacterial imaging. Sci Rep. 2015;5:11048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Stritzker J, Kirscher L, Scadeng M, Deliolanis NC, Morscher S, Symvoulidis P, Schaefer K, Zhang Q, Buckel L, Hess M, et al. Vaccinia virus-mediated melanin production allows MR and optoacoustic deep tissue imaging and laser-induced thermotherapy of cancer. Proc Natl Acad Sci. 2013;110(9):3316–20.

    Article  CAS  PubMed  Google Scholar 

  65. Aguirre J, Schwarz M, Soliman D, Buehler A, Omar M, Ntziachristos V. Broadband mesoscopic optoacoustic tomography reveals skin layers. Opt Lett. 2014;39(21):6297.

    Article  PubMed  Google Scholar 

  66. Schwarz M, Omar M, Buehler A, Aguirre J, Ntziachristos V. Implications of ultrasound frequency in optoacoustic mesoscopy of the skin. IEEE Trans Med Imaging. 2015;34(2):672–7.

    Article  PubMed  Google Scholar 

  67. Stoffels I, Morscher S, Helfrich I, Hillen U, Leyh J, Burton NC, Sardella TCP, Claussen J, Poeppel TD, Bachmann HS, et al. Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging. Sci Transl Med. 2015;7(317):317ra199.

    Article  PubMed  CAS  Google Scholar 

  68. Yang J-M, Favazza C, Chen R, Yao J, Cai X, Maslov K, Zhou Q, Shung KK, Wang LV. Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo. Nat Med. 2012;18(8):1297–302.

    Article  CAS  PubMed  Google Scholar 

  69. He H, Buehler A, Ntziachristos V. Optoacoustic endoscopy with curved scanning. Opt Lett. 2015;40(20):4667–70.

    Article  PubMed  Google Scholar 

  70. Diot G, Dima A, Ntziachristos V. Multispectral opto-acoustic tomography of exercised muscle oxygenation. Opt Lett. 2015;40(7):1496–9.

    Article  CAS  PubMed  Google Scholar 

  71. Sethuraman S, Amirian JH, Litovsky SH, Smalling RW, Emelianov SY. Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques. Opt Express. 2008;16(5):3362–7.

    Article  CAS  PubMed  Google Scholar 

  72. Aguirre J, Schwarz M, Garzorz N, Omar M, Buehler A, Eyerich K, Ntziachristos V. Precision assessment of label-free psoriasis biomarkers with ultra-broadband optoacoustic mesoscopy. Nat Biomed Eng. 2017;1:0068.

    Article  Google Scholar 

  73. Schwarz M, Soliman D, Omar M, Buehler A, Aguirre J, Ntziachristos V. Optoacoustic dermoscopy of the human skin: tuning excitation energy for optimal detection bandwidth with fast and deep imaging in vivo. IEEE Trans Med Imaging. 2017;36:1287–96.

    Article  PubMed  Google Scholar 

  74. Taruttis A, Timmermans AC, Wouters PC, Kacprowicz M, van Dam GM, Ntziachristos V. Optoacoustic imaging of human vasculature: feasibility by using a handheld probe. Radiology. 2016;281(1):256–63.

    Article  PubMed  Google Scholar 

  75. Neuschmelting V, Burton NC, Lockau H, Urich A, Harmsen S, Ntziachristos V, Kircher MF. Performance of a multispectral optoacoustic tomography (MSOT) system equipped with 2D vs. 3D handheld probes for potential clinical translation. Photoacoustics. 2016;4(1):1–10.

    Article  PubMed  Google Scholar 

  76. Waldner MJ, Knieling F, Egger C, Morscher S, Claussen J, Vetter M, Kielisch C, Fischer S, Pfeifer L, Hagel A, et al. Multispectral optoacoustic tomography in Crohn’s disease: non-invasive imaging of disease activity. Gastroenterology. 2016;151:238–40.

    Article  PubMed  Google Scholar 

  77. Estrada H, Sobol E, Baum O, Razansky D. Hybrid optoacoustic and ultrasound biomicroscopy monitors’ laser-induced tissue modifications and magnetite nanoparticle impregnation. Laser Phys Lett. 2014;11(12):125601.

    Article  CAS  Google Scholar 

  78. Hu S, Maslov K, Wang LV. Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed. Opt Lett. 2011;36(7):1134–6.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Strohm EM, Berndl ESL, Kolios MC. High frequency label-free photoacoustic microscopy of single cells. Photoacoustics. 2013;1(3):49–53.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasilis Ntziachristos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Omar, M., Soliman, D., Ntziachristos, V. (2019). Multimodal Optoacoustic Imaging. In: Kuntner-Hannes, C., Haemisch, Y. (eds) Image Fusion in Preclinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-02973-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02973-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02972-2

  • Online ISBN: 978-3-030-02973-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics