Skip to main content

High Power/Energy Molecular Lasers

  • Chapter
  • First Online:
High-Conductivity Channels in Space

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 103))

  • 312 Accesses

Abstract

A SSVD can be established in a gas by creating primary electrons the density of which should exceed a certain minimum value nmin throughout the discharge gap. Various methods for preionization of a gas in the discharge gap have been developed for this purpose. Primary electrons are created by these methods directly in the discharge gap , which sometimes causes difficulties in the establishment of conditions necessary for the formation of a SSVD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.Yu. Baranov, V.M. Borisov, A.A. Vedenov, S.V. Drobyazko, V.N. Knizhnikov, A.P. Napartovich, V.G. Niz’ev, A.P. Strel’tsov, in Preprint No. 2248 (in Russian) (Institute of Atomic Energy, Moscow, 1972

    Google Scholar 

  2. V.N. Karnyushin, A.N. Malov, R.I. Soloukhin, Kvantovaya Elektron. (Moscow) 5, 555 (1978); Sov. J. Quantum Electron. 8, 319 (1978)

    Google Scholar 

  3. H. Seguin, J. Tulip, The article you requested is currently in production and will be available online at a later date. Appl. Phys. Lett. 21, 414 (1972)

    Article  ADS  Google Scholar 

  4. A.I. PavlovskiT, V.S. Bosamykin, V.I. Karelin, V.S. Nikol’skii. Kvantovaya Elektron. (Moscow) 3, 601 (1976); Sov. J. Quantum Electron. 6, 321 (1976)

    Google Scholar 

  5. A.I. Pavlovskii, V.F. Basmanov, V.S. Bosamykin, V.V. Gorokhov, V.I. Karelin, and P.B. Repin, in Abstracts of Papers presented at Second All-Union Conf. on Physics of Electric Breakdown in Gases, Tartu (in Russian) (1984), p. 330

    Google Scholar 

  6. R.V. Babcock, I. Liberman, W.P. Partlov, Volume ultraviolet preionization from bare sparks. IEEE J. Quantum Electron. 12, 29–34 (1976)

    Article  ADS  Google Scholar 

  7. A.V. Kozrev, Yu.D. Korolev, G.A. Mesyats, Yu.N. Novoselov, A.M. Prokhorov, V.S. Skakun, V.F. Tarasenko, and S.A. Genkin: Kvantovaya Elektron. (Moscow) 11, 524 (1984); Sov. J. Quantum Electron. 14, 356 (1984)]

    Google Scholar 

  8. R.E. Beverly III, Appl. Phys. B 53, 187–193 (1991)

    Article  ADS  Google Scholar 

  9. T.Y. Chang, The article you requested is currently in production and will be available online at a later date. Rev. Sci. Instrum. 44, 405 (1973)

    Article  ADS  Google Scholar 

  10. V.V. Apollonov, A.M. Prokhorov et al., Kvantovaya Elektron. (Moscow) 11, 1327 (1984); Sov. J. Quantum Electron. 14, 898 (1984)

    Google Scholar 

  11. V.V. Apollonov, A.M. Prokhorov, Ustinov et al., Kvantovaya Elektron. (Moscow) 12 (1985)

    Google Scholar 

  12. V.V. Apollonov, A.I. Barchukov, A.M. Prokhorov et al . Pis’ma Zh. Tekh. Fiz. 3 (1977)

    Google Scholar 

  13. V.V. Apollonov et al., Pis’ma Zh. Tekh. Fiz. 5 (1979)

    Google Scholar 

  14. V.V. Apollonov, A.M. Prokhorov et al., Kvantovaya Elektron. (Moscow) 10 (1983)

    Google Scholar 

  15. A.A. Kuchinskii (Kuchinsky), B.V. Lyubin, V.F. Shanskii, in Proceedings of Sixteenth International Conference on Phenomena in Ionized Gases, Dusseldorf (1983)

    Google Scholar 

  16. A.K. Laamme, Rev. Sci. Instrum. 41, 1578 (1970)

    Article  ADS  Google Scholar 

  17. A.J. Beaulieu, Appl. Phys. Lett. 16, 504 (1970)

    Article  ADS  Google Scholar 

  18. R. Dumanchin, J. Rocca-Serra, C. R. Acad. Sci. Ser. 269, 916 (1969)

    Google Scholar 

  19. V.P. Gorelov, N.N. Minakova, V.A. Chagin, Elektrotekh. Promst. Ser. Elektrotekh. Mater. 5, 20 (1972)

    Google Scholar 

  20. P.A. Belanger, R. Tremblay, J. Boivin, G. Otis, Can. J. Phys. 50, 2753 (1972)

    Article  ADS  Google Scholar 

  21. V.V. Apollonov, et al., Kvantovaya Elektron. (Moscow) 11 (1984)

    Google Scholar 

  22. A.L. Ward: J. Appl. Phys. 36 (1965)

    Google Scholar 

  23. O.P. Judd, J. Appl. Phys. 45, 4572 (1974)

    Google Scholar 

  24. A.H. von Engel, Ionized Gases (Clarendon Press, Oxford, 1955)

    Google Scholar 

  25. I.L. Kamardin, A.A. Kuchinskii, V.A. Rodichkin, V.F. Shanskii, in Abstracts the Third All-Union Conference on Laser Optics, Leningrad (1982)

    Google Scholar 

  26. S.I. Andreev, N. M. Belousova, A.M. Prokhorov et al., Kvantovaya Elektron. 3 (1976)

    Google Scholar 

  27. Yu.D. Korolev, G.A. Mesyats, Physics of the Pulsed Electrical Breakdown of Gases (1991)

    Google Scholar 

  28. V.V. Apollonov et al., Pis’ma Zh. Tekh. Fiz. 22 (1996)

    Google Scholar 

  29. V.V. Apollonov et al., Quantum Electron. 27, 207 (1997)

    Article  ADS  Google Scholar 

  30. V.V. Apollonov et al., Quantum Electron. 28, 116 (1998)

    Article  ADS  Google Scholar 

  31. V.V. Apollonov et al., in Proceedings of SPIE International Society for Optical Engineering, vol. 374 (1998)

    Google Scholar 

  32. L. Richeboeuf et al., The influence of H2 and C2H6 molecules on discharge equilibrium and F-atom production in a phototriggered HF laser using SF6. Phys. D 31 (1998)

    Google Scholar 

  33. V.V. Apollonov et al., in Proceedings of the Second International Conference (National Academy of Sciences of Belarus, Minsk, 1997)

    Google Scholar 

  34. G.D. Bortnik, The Physical Properties and the Electrical Strength of Sulfur Hexafluoride (1989)

    Google Scholar 

  35. V.V. Apollonov et al., in Proceedings of the Ninth Conference on the Physics of Gas Discharges, Ryazan (1980)

    Google Scholar 

  36. A.F. Zapol’skii, A.A. Yushko: Kvantovaya Elektron. (Moscow), Vol. 6, (1979)

    Google Scholar 

  37. E.B. Gordon, V.I. Matyushenko, P.B. Repin, V.D. Sizov: Khim. Fiz. 8 (1989)

    Google Scholar 

  38. A.A. Belevtsev, in Proceedings of the Thirteenth International Conference on Dielectric Liquids, Nara, Japan (1999)

    Google Scholar 

  39. A.A Radtsig, M. Smirnov, Handbook of Atomic and Molecular Physics (Atomizdat, Moscow, 1980)

    Google Scholar 

  40. H.S. Massey, Negative Ions (Cambridge University Press, Cambridge, 1976)

    Google Scholar 

  41. D.I. Slovetskii, A.A. Deryugin, The Chemistry of Plasma (1987)

    Google Scholar 

  42. A.V. Melekhov, in Abstracts of Papers presented at Second Ail-Union Conference on Physics of Electric Breakdown of Gases, Tartu (1984) (in Russian)

    Google Scholar 

  43. V.V. Apollonov et al., Izv. Akad. Nauk, Ser. Fiz. 64 (2000)

    Google Scholar 

  44. V.V. Apollonov et al., in Proceedings of SPIE International Society for Optical Engineering, vol. 370 (1999)

    Google Scholar 

  45. V.V. Apollonov et al., Kvantovaya Elektron. 30 (2000)

    Google Scholar 

  46. N. Nakano, N. Shimura, Z.L. Petrovic, T. Makabe, Simulations of rf glow discharges in SF6 by the relaxation continuum model: physical structure and function of the narrow-gap reactive-ion etcher. Phys. Rev. E 49 (1994)

    Google Scholar 

  47. H. Hilmert, W.F. Schmidt, Electron detachment from negative ions of sulphur hexa uoride-swarm experiments. Phys. D: Appl. Phys. 24 (1991)

    Google Scholar 

  48. L.M. Biberman. Izv. Akad. Nauk SSSR, Ser. Energ. Tramp. 3 (1976)

    Google Scholar 

  49. V.V. Apollonov et al. Kvantovaya Elektron. 30 (2000)

    Google Scholar 

  50. A.J. Palmer. The article you requested is currently in production and will be available online at a later date. Appl. Phys. Lett. 25, 138 (1974)

    Google Scholar 

  51. A.F. BelyatskiT, D.B. Gurevich, M.A. Kanatenko, I.V. Podmoshenski, T. Pis’ma. Zh. Tekh. Fiz. (Sov. Tech. Phys. Lett.) 6, 73 (1980)

    Google Scholar 

  52. S.C. Lin, J.I. Levatter, X-ray preionization for electric discharge laser. Appl. Phys. Lett. 34, 505 (1979)

    Article  ADS  Google Scholar 

  53. V.V. Apollonov, G.G. Baitsur, A.M. Prokhorov, and K.N. Firsov: Pis’ma Zh. Tekh. Fiz. 11, 1262 (1985); Sov. Tech. Phys. Lett. 11, 521 (1985)

    Google Scholar 

  54. V.V. Apollonov et al., in Proceedings of XIII Intern. Conference on Gas Discharge and their Applications, vol. 1 (2000)

    Google Scholar 

  55. V.V. Apollonov et al., in Proceedings of XXV International Conference on Phenomena in Ionized Gases, vol. 1 (2001)

    Google Scholar 

  56. V.V. Apollonov et al., Kvantovaya Elektron. 31 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Apollonov .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Apollonov, V. (2018). High Power/Energy Molecular Lasers. In: High-Conductivity Channels in Space. Springer Series on Atomic, Optical, and Plasma Physics, vol 103. Springer, Cham. https://doi.org/10.1007/978-3-030-02952-4_15

Download citation

Publish with us

Policies and ethics