Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)
CrossRef
Google Scholar
Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: UAI, pp. 43–52. Morgan Kaufmann Publishers Inc. (1998)
Google Scholar
Gao, R., Li, J., Li, X., Song, C., Zhou, Y.: A personalized point-of-interest recommendation model via fusion of geo-social information. Neurocomputing 273, 159–170 (2018)
CrossRef
Google Scholar
Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback datasets. In: ICDM, pp. 263–272. IEEE (2008)
Google Scholar
Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: KDD, pp. 426–434. ACM (2008)
Google Scholar
Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 8, 30–37 (2009)
CrossRef
Google Scholar
Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: NIPS, pp. 556–562 (2001)
Google Scholar
Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Comput. 7(1), 76–80 (2003)
CrossRef
Google Scholar
Mnih, A., Salakhutdinov, R.: Probabilistic matrix factorization. In: NIPS, pp. 1257–1264 (2007)
Google Scholar
Pan, R., et al.: One-class collaborative filtering. In: ICDM, pp. 502–511. IEEE (2008)
Google Scholar
Pan, W., Chen, L.: GBPR: group preference based bayesian personalized ranking for one-class collaborative filtering. In: IJCAI, vol. 13, pp. 2691–2697 (2013)
Google Scholar
Peng, M., Zeng, G., Sun, Z., Huang, J., Wang, H., Tian, G.: Personalized app recommendation based on app permissions. World Wide Web 21(1), 89–104 (2018)
CrossRef
Google Scholar
Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personalized ranking from implicit feedback. In: UAI, pp. 452–461. AUAI Press (2009)
Google Scholar
Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: WWW, pp. 285–295. ACM (2001)
Google Scholar
Shu, J., Jia, X., Yang, K., Wang, H.: Privacy-preserving task recommendation services for crowdsourcing. IEEE Trans. Serv. Comput. (2018)
Google Scholar
Tobler, W.R.: A computer movie simulating urban growth in the detroit region. Econ. geogr. 46, 234–240 (1970)
CrossRef
Google Scholar
Wu, Y.: Real estate’s contribution to GDP falling. http://timmurphy.org/2009/07/22/line-spacing-in-latex-documents/. Accessed 1 Nov 2017
Yin, H., Cui, B., Zhou, X., Wang, W., Huang, Z., Sadiq, S.: Joint modeling of user check-in behaviors for real-time point-of-interest recommendation. TOIS 35(2), 1–44 (2016)
CrossRef
Google Scholar
Yu, Y., Chen, X.: A survey of point-of-interest recommendation in location-based social networks. In: Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)
Google Scholar
Yu, Y., Gao, Y., Wang, H., Wang, R.: Joint user knowledge and matrix factorization for recommender systems. In: Cellary, W., Mokbel, M.F., Wang, J., Wang, H., Zhou, R., Zhang, Y. (eds.) WISE 2016. LNCS, vol. 10041, pp. 77–91. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48740-3_6
CrossRef
Google Scholar
Yu, Y., Gao, Y., Wang, H., Wang, R.: Joint user knowledge and matrix factorization for recommender systems. World Wide Web 21(4), 1141–1163 (2018)
CrossRef
Google Scholar
Yu, Y., Wang, H., Sun, S., Gao, Y.: Exploiting location significance and user authority for point-of-interest recommendation. In: Kim, J., Shim, K., Cao, L., Lee, J.-G., Lin, X., Moon, Y.-S. (eds.) PAKDD 2017. LNCS (LNAI), vol. 10235, pp. 119–130. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57529-2_10
CrossRef
Google Scholar
Zhao, T., McAuley, J., King, I.: Leveraging social connections to improve personalized ranking for collaborative filtering. In: CIKM, pp. 261–270. ACM (2014)
Google Scholar