Advertisement

A CP-Net Based Qualitative Composition Approach for an IaaS Provider

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11234)

Abstract

We propose a novel CP-Net based composition approach to qualitatively select an optimal set of consumers for an IaaS provider. The IaaS provider’s and consumers’ qualitative preferences are captured using CP-Nets. We propose a CP-Net composability model using the semantic congruence property of a qualitative composition. A greedy-based and a heuristic-based consumer selection approaches are proposed that effectively reduce the search space of candidate consumers in the composition. Experimental results prove the feasibility of the proposed composition approach.

Keywords

Cloud service composition IaaS composition Qualitative preference composition CP-Net composability model Monte Carlo simulation 

Notes

Acknowledgement

This research was made possible by NPRP 7-481-1-088 grant from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the authors.

References

  1. 1.
    Armbrust, M., et al.: A view of cloud computing. Commun. ACM 53(4), 50–58 (2010)CrossRefGoogle Scholar
  2. 2.
    Balke, W.T., Wagner, M.: Towards personalized selection of web services. In: WWW (Alternate Paper Tracks), pp. 20–24 (2003)Google Scholar
  3. 3.
    Binder, K., Heermann, D., Roelofs, L., Mallinckrodt, A.J., McKay, S.: Monte Carlo simulation in statistical physics. Comput. Phys. 7(2), 156–157 (1993)CrossRefGoogle Scholar
  4. 4.
    Boutilier, C., Bacchus, F., Brafman, R.I.: UCP-networks: a directed graphical representation of conditional utilities. In: Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, pp. 56–64. Morgan Kaufmann Publishers Inc. (2001)Google Scholar
  5. 5.
    Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: a tool for representing and reasoning with conditional ceteris paribus preference statements. J. Artif. Intell. Res. (JAIR) 21, 135–191 (2004)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chaisiri, S., Lee, B.S., Niyato, D.: Optimization of resource provisioning cost in cloud computing. IEEE Trans. Serv. Comput. 5(2), 164–177 (2012)CrossRefGoogle Scholar
  7. 7.
    Lang, J., Xia, L.: Sequential composition of voting rules in multi-issue domains. Math. Soc. Sci. 57(3), 304–324 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Li, L., Liu, D., Bouguettaya, A.: Semantic based aspect-oriented programming for context-aware web service composition. Inf. Syst. 36(3), 551–564 (2011)CrossRefGoogle Scholar
  9. 9.
    Li, M., Vo, Q.B., Kowalczyk, R.: Aggregating multi-valued CP-nets: a CSP-based approach. J. Heuristics 21(1), 107–140 (2015)CrossRefGoogle Scholar
  10. 10.
    Liu, X., Bouguettaya, A., Wu, J., Zhou, L.: Ev-LCS: a system for the evolution of long-term composed services. IEEE Trans. Serv. Comput. 6(1), 102–115 (2013)CrossRefGoogle Scholar
  11. 11.
    Mistry, S., Bouguettaya, A., Dong, H., Erradi, A.: Qualitative economic model for long-term IaaS composition. In: Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.) ICSOC 2016. LNCS, vol. 9936, pp. 317–332. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46295-0_20CrossRefGoogle Scholar
  12. 12.
    Mistry, S., Bouguettaya, A., Dong, H., Erradi, A.: Probabilistic qualitative preference matching in long-term IaaS composition. In: Maximilien, M., Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 256–271. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-69035-3_18CrossRefGoogle Scholar
  13. 13.
    Mistry, S., Bouguettaya, A., Dong, H., Qin, A.K.: Predicting dynamic requests behavior in long-term IaaS service composition. In: ICWS, pp. 49–56. IEEE (2015)Google Scholar
  14. 14.
    Mistry, S., Bouguettaya, A., Dong, H., Qin, A.: Metaheuristic optimization for long-term IaaS service composition. IEEE Trans. Serv. Comput. 11, 1 (2017)Google Scholar
  15. 15.
    Mukhtar, H., Belaïd, D., Bernard, G.: A quantitative model for user preferences based on qualitative specifications. In: ICPS, pp. 179–188. ACM (2009)Google Scholar
  16. 16.
    Rossi, F., Venable, K.B., Walsh, T.: mCP nets: representing and reasoning with preferences of multiple agents. AAAI 4, 729–734 (2004)Google Scholar
  17. 17.
    Wang, H., Shao, S., Zhou, X., Wan, C., Bouguettaya, A.: Web service selection with incomplete or inconsistent user preferences. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC/ServiceWave -2009. LNCS, vol. 5900, pp. 83–98. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10383-4_6CrossRefGoogle Scholar
  18. 18.
    Wang, H., Tao, Y., Yu, Q., Lin, X., Hong, T.: Incorporating both qualitative and quantitative preferences for service recommendation. J. Parallel Distribut. Comput. 114, 46–69 (2017)CrossRefGoogle Scholar
  19. 19.
    Wang, H., Wang, H., Guo, G., Tang, Y., Zhang, J.: Measuring similarity of users with qualitative preferences for service selection. Knowl. Inf. Syst. 51(2), 561–594 (2017)CrossRefGoogle Scholar
  20. 20.
    Ye, Z., Bouguettaya, A., Zhou, X.: QoS-aware cloud service composition based on economic models. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 111–126. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34321-6_8CrossRefGoogle Scholar
  21. 21.
    Ye, Z., Mistry, S., Bouguettaya, A., Dong, H.: Long-term QoS-aware cloud service composition using multivariate time series analysis. IEEE Trans. Serv. Comput. 9(3), 382–393 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Information TechnologiesUniversity of SydneySydneyAustralia

Personalised recommendations