Skip to main content

Classification of Automotive Electric/Electronic Features and the Consequent Hierarchization of the Logical System Architecture

From Functional Chains to Functional Networks

  • Conference paper
  • First Online:
Smart Cities, Green Technologies, and Intelligent Transport Systems (SMARTGREENS 2017, VEHITS 2017)

Abstract

In the established Automotive Systems Engineering (ASE) practice, an important factor in handling the complexity of product development is the partitioning of the vehicle into different domains. The current technological advances enable increasingly complex features for assisted and automated driving that reach across these different domains and are difficult to handle by the existing approaches. To cope with these challenges, new innovative methods, procedures and techniques are required that integrate well with the established practice. In this contribution, we analyze existing and future automotive features and classify them in a comprehensive taxonomy. Based on this characterization, established industrial and new research approaches for logical system architectures are consolidated. The introduction of new levels of hierarchy in the logical system architecture facilitates the attribution of specific design schemes and engineering approaches to the related functional elements. This approach facilitates the management of features with high internal variety and wide distribution over several subsystems. The systematic approach provides a novel rationale for the evolution from functional chains to functional networks in the automotive industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    BMW Technology Guide, Bayerische Motoren Werke Aktiengesellschaft, http://www.bmw.com/com/en/insights/technology/technology_guide/index.html.

  2. 2.

    Welcome to the Mercedes-Benz TechCenter, Daimler AG, https://techcenter.mercedes-benz.com/en/index.html.

  3. 3.

    Advanced technology at your fingertips, Ford Motor Company, http://www.ford.com/cars/ focus/features/#page=FeatureCategory4.

  4. 4.

    Technologies & Innovations, Automobiles Peugeot, http://www.peugeot.com/en/technology.

  5. 5.

    Toyota Technology, Toyota Motor Sales, U.S.A., Inc., http://www.toyota.com/technology/.

  6. 6.

    Technik auf den Punkt gebracht., Volkswagen AG, http://www.volkswagen.de/de/ technologie/technik-lexikon.html.

References

  1. Adler, N., Hillenbrand, M., Müller-Glaser, K.D., Metzker, E., Reichmann, C.: Graphically notated fault modeling and safety analysis in the context of electric and electronic architecture development and functional safety. In: 2012 23rd IEEE International Symposium on Rapid System Prototyping (RSP), pp. 36–42, August 2012

    Google Scholar 

  2. Aeberhard, M., et al.: Experience, results and lessons learned from automated driving on Germany’s highways. IEEE Intell. Transp. Syst. Mag. 7(1), 42–57 (2015)

    Article  Google Scholar 

  3. Ahmed, M., Svaricek, F.: Preview optimal control of vehicle semi-active suspension based on partitioning of chassis acceleration and tire load spectra. In: 2014 European Control Conference (ECC), pp. 1669–1674, June 2014

    Google Scholar 

  4. ATESST2 Consortium: EAST-ADL Domain Model Specification, 2.1.12 (edn.) (2013)

    Google Scholar 

  5. Automotive-SIG: Automotive SPICE Process Assessment/Reference Model. VDA QMC, Berlin, Germany, 3.0 edn., July 2015. http://www.automotivespice.com/

  6. AUTOSAR development cooperation: Specification of RTE. Munich, 4.2.1 edn., July 2015. https://www.autosar.org/specifications/release-42/

  7. Bach, J., Otten, S., Sax, E.: A taxonomy and systematic approach for automotive system architectures - from functional chains to functional networks. In: 3rd International Conference on Vehicle Technology and Intelligent Transport Systems (VEHITS), Porto (2017)

    Google Scholar 

  8. Baldessari, R., et al.: CAR 2 CAR Communication Consortium Manifesto. CAR 2 CAR Communication Consortium, Brussels, 1.1 (edn.), August 2007

    Google Scholar 

  9. Bauer, E., et al.: PRORETA 3: an integrated approach to collision avoidance and vehicle automation. Automatisierungstechnik 60, 755–765 (2012)

    Article  Google Scholar 

  10. Bauer, K.L., Gauterin, F.: A two-layer approach for predictive optimal cruise control. In: SAE 2016 World Congress and Exhibition (2016)

    Google Scholar 

  11. Bauer, K.L., Gauterin, F.: A two-layer approach for predictive optimal cruise control. In: SAE Technical Paper 2016–01-0634 (2016)

    Google Scholar 

  12. Bechler, M., Makeschin, L.: Reichweitenschätzung für elektrofahrzeuge, September 2015. http://google.com/patents/DE102014204308A1?cl=de dE Patent App. DE201,410,204,308

  13. Becker, J., Colas, M.-B.A., Nordbruch, S., Fausten, M.: Bosch’s vision and roadmap toward fully autonomous driving. In: Meyer, G., Beiker, S. (eds.) Road Vehicle Automation. LNM, pp. 49–59. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05990-7_5

    Chapter  Google Scholar 

  14. Bengler, K., Dietmayer, K., Färber, B., Maurer, M., Stiller, C., Winner, H.: Three decades of driver assistance systems. IEEE Intell. Transp. Syst. Mag. 6(4), 6–22 (2014)

    Article  Google Scholar 

  15. Bhave, A., Krogh, B.H., Garlan, D., Schmerl, B.: View consistency in architectures for cyber-physical systems. In: 2011 IEEE/ACM International Conference on Cyber-Physical Systems (ICCPS), pp. 151–160, April 2011

    Google Scholar 

  16. Bogenrieder, R., Fehring, M., Bachmann, R.: Pre-safe in rear-end collision situations. In: Proceedings 21st International Technical Conference on the Enhanced Safety of Vehicles, Stuttgart (2009)

    Google Scholar 

  17. Boll, B., Stinus, J., Salecker, M., Schneider, G.: Hill holder device for a motor vehicle, January 2004. https://www.google.com/patents/US6679810 US Patent 6,679,810

  18. Broström, R., Engström, J., Agnvall, A., Markkula, G.: Towards the next generation intelligent driver information system (IDIS): the Volvo car interaction manager concept. In: Proceedings of the 2006 ITS World Congress, p. 32 (2006)

    Google Scholar 

  19. Buechel, M., et al.: An automated electric vehicle prototype showing new trends in automotive architectures. In: 2015 IEEE 18th International Conference on Intelligent Transportation Systems, pp. 1274–1279, September 2015

    Google Scholar 

  20. Coelingh, E., Eidehall, A., Bengtsson, M.: Collision warning with full auto brake and pedestrian detection-a practical example of automatic emergency braking. In: 2010 13th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 155–160. IEEE (2010)

    Google Scholar 

  21. Conradi, P.: Reichweitenprognose für elektromobile. Vernetztes Automobil, pp. 179–186 (2014)

    Google Scholar 

  22. Cramer, S., Lange, A., Bengler, K.: Path planning and steering control concept for a cooperative lane change maneuver according to the h-mode concept. In: 7. Tagung Fahrerassistenzsysteme, November 2015

    Google Scholar 

  23. Dagan, E., Mano, O., Stein, G., Shashua, A.: Forward collision warning with a single camera. In: IEEE Intelligent Vehicles Symposium, pp. 37–42, June 2004

    Google Scholar 

  24. Daniel, J., Lauffenburger, J.P.: Fusing navigation and vision information with the transferable belief model: application to an intelligent speed limit assistant. Inf. Fusion 18, 62–77 (2014)

    Article  Google Scholar 

  25. Dimig, S., et al.: Steering column lock apparatus and method, June 2003. https://www.google.com/patents/US6571587. US Patent 6,571,587

  26. Dix, P., Bojarski, M.: Reprogrammable vehicle access control system, December 2004. https://www.google.com/patents/US20040263316. US Patent App. 10/602,750

  27. Fawcett, J., Robinson, P.: Adaptive routing for road traffic. IEEE Comput. Graph. Appl. 20(3), 46–53 (2000)

    Article  Google Scholar 

  28. Flemisch, F.O., Bengler, K., Bubb, H., Winner, H., Bruder, R.: Towards cooperative guidance and control of highly automated vehicles: H-mode and conduct-by-wire. Ergonomics 57(3), 343–360 (2014). https://doi.org/10.1080/00140139.2013.869355. pMID: 24559139

    Article  Google Scholar 

  29. Fuerst, S.: AUTOSAR the next generation - the adaptive platform. In: CARS Critical Automotive applications: Robustness & Safety in 11th EDCC European Dependable Computing Conference (2015)

    Google Scholar 

  30. Gemeinschaftswerk, siehe Autorenliste: Bosch Automotive Electrics and Automotive Electronics, vol. 5. Robert Bosch GmbH, Plochingen (2007)

    Google Scholar 

  31. Golding, A.: Automobile navigation system with dynamic traffic data, August 1999. https://www.google.com/patents/US5933100. US Patent 5,933,100

  32. Granier, E.: Device and method for emergency call, March 2004. https://www.google.com/patents/US6711399 US Patent 6,711,399

  33. Haas, W., Langjahr, P.: Cross-domain vehicle control units in modern E/E architectures. In: 16. Internationales Stuttgarter Symposium, pp. 1619–1627 (2016)

    Google Scholar 

  34. Holder, S., Hoerwick, M., Gentner, H.: Funktionsübergreifende szeneninterpretation zur vernetzung von fahrerassistenzsystemen. In: AAET - Automatisiertes und vernetztes Fahren (2012)

    Google Scholar 

  35. Ishida, S., Gayko, J.E.: Development, evaluation and introduction of a lane keeping assistance system. In: Intelligent Vehicles Symposium, pp. 943–944. IEEE, June 2004

    Google Scholar 

  36. Kaempchen, N., Schiele, B., Dietmayer, K.: Situation assessment of an autonomous emergency brake for arbitrary vehicle-to-vehicle collision scenarios. IEEE Trans. Intell. Transp. Syst. 10(4), 678–687 (2009)

    Article  Google Scholar 

  37. Katzwinkel, R., et al.: Handbuch Fahrerassistenzsysteme. Bremsenbasierte Assistenzfunktionen, pp. 471–477. Vieweg & Teubner Verlag, Springer Fachmedien, Wiesbaden (2012)

    Google Scholar 

  38. Kim, J.W., Lee, K.J., Ahn, H.S.: Development of software component architecture for motor-driven power steering control system using AUTOSAR methodology. In: 2015 15th International Conference on Control, Automation and Systems (ICCAS), pp. 1995–1998, October 2015

    Google Scholar 

  39. Kleine-Besten, T., Kersken, U., Pöchmüller, W., Schepers, H.: Handbuch Fahrerassistenzsysteme. Navigation und Telematik, pp. 599–624. Vieweg & Teubner Verlag, Springer Fachmedien, Wiesbaden (2012)

    Chapter  Google Scholar 

  40. Korsiakoff, A., Sweet, W.N., Seymour, S.J., Biemer, S.M.: Systems Engineering Principles and Practice. Wiley, Hoboken (2011)

    Book  Google Scholar 

  41. Kulkarni, M., Shim, T., Zhang, Y.: Shift dynamics and control of dual-clutch transmissions. Mech. Mach. Theory 42(2), 168–182 (2007). http://www.sciencedirect.com/science/article/pii/S0094114X06000565

    Article  Google Scholar 

  42. Kuroda, S., Kiyomiya, T., Matsubara, A., Kitajima, S.: Engine automatic start stop control apparatus, January 2003. https://www.google.com/patents/US6504259. US Patent 6,504,259

  43. Leen, G., Heffernan, D.: Expanding automotive electronic systems. Computer 35(1), 88–93 (2002)

    Article  Google Scholar 

  44. Liebemann, E.K., Meder, K., Schuh, J., Nenninger, G.: Safety and performance enhancement: the bosch electronic stability control (ESP). SAE Paper 2004, 21–0060 (2004)

    Google Scholar 

  45. Lundquist, C., Reinelt, W., Enqvist, O.: Back driving assistant for passenger cars with trailer. In: SAE 2006 World Congress & Exhibition (2006)

    Google Scholar 

  46. Majeed, K.N.: On/off semi-active suspension control, September 1991. https://www.google.com/patents/US5062657. US Patent 5,062,657

  47. Matsumoto, S., Kimura, T., Takahama, T., Toyota, H.: Lane keep control for vehicle, April 2003. https://www.google.com/patents/US6556909. US Patent 6,556,909

  48. Matthaei, R., Maurer, M.: Autonomous driving - a top-down-approach. Automatisierungstechnik 63(3), 155–167 (2015)

    Article  Google Scholar 

  49. Miller, R.H., Tascillo, A.L.: Blind spot warning system for an automotive vehicle (2005). https://www.google.com/patents/US6859148. US Patent 6,859,148

  50. Montemerlo, M., et al.: Junior: the stanford entry in the urban challenge. J. Field Robot. 25(9), 569–597 (2008). https://doi.org/10.1002/rob.20258

    Article  Google Scholar 

  51. Moon, S., Yi, K., Moon, I.: Design, tuning and evaluation of integrated ACC/CA systems. In: 17th World Congress of the International Federation of Automatic Control (IFAC 2008). IFAC Proceedings Volumes, vol. 41, pp. 8546–8551, July 2008

    Article  Google Scholar 

  52. Müller, T.: Chancen und risiken auf dem weg zum ppilotierte fahren. In: Internationaler Automobil Kongress, October 2016

    Google Scholar 

  53. Muñoz-Organero, M., Magaña, V.: Validating the impact on reducing fuel consumption by using an EcoDriving assistant based on traffic sign detection and optimal deceleration patterns. IEEE Trans. Intell. Transp. Syst. 14(2), 1023–1028 (2013)

    Article  Google Scholar 

  54. Naranjo, J.E., Gonzalez, C., Garcia, R., de Pedro, T., Haber, R.E.: Power-steering control architecture for automatic driving. IEEE Trans. Intell. Transp. Syst. 6(4), 406–415 (2005)

    Article  Google Scholar 

  55. Navale, V.M., Williams, K., Lagospiris, A., Schaffert, M., Schweiker, M.A.: (R)evolution of E/E architectures. SAE Int. J. Passeng. Cars Electron. Electr. Syst. 8(2), 282–288 (2015)

    Google Scholar 

  56. Nilsson, J., Brännström, M., Coelingh, E., Fredriksson, J.: Lane change maneuvers for automated vehicles. IEEE Trans. Intell. Transp. Syst. PP(99), 1–10 (2016)

    Google Scholar 

  57. Neural Network: Traffic jam assist. http://products.bosch-mobility-solutions.com/en/de/driving_com fort/ driving_comfort_systems_for_passenger_cars_1/driver_assistance_systems_4/driver_assis tance_systems_5.html

  58. N.N.: Predictive efficiency assistant (2012). http://www.audi-technology-portal.de/en/mobility-for-the-future/audi-future-lab-mobility_en/audi-future-engines_en/predictive-efficiency-assistant

  59. Nordbruch, S., Quast, G., Nicodemus, R., Scheiger, R.: Automated valet parking. In: 7. Tagung Fahrerassistenzsysteme, November 2015

    Google Scholar 

  60. Park, J.H., Kim, C.Y.: Wheel slip control in traction control system for vehicle stability. Veh. Syst. Dyn. 31(4), 263–278 (1999)

    Article  MathSciNet  Google Scholar 

  61. Pohl, K., Hoenninger, H., Achatz, R., Broy, M.: Model-Based Engineering of Embedded Systems - The SPES 2020 Methodology. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34614-9

    Book  Google Scholar 

  62. Prabhu, S.M., Mosterman, P.J.: Model-based design of a power window system: modeling, simulation and validation. In: Proceedings of IMAC-XXII: A Conference on Structural Dynamics, Society for Experimental Mechanics Inc., Dearborn (2004)

    Google Scholar 

  63. Pretschner, A., Broy, M., Krueger, I.H., Stauner, T.: Software engineering for automotive systems: a roadmap. In: FOSE Future of Software Engineering (2007)

    Google Scholar 

  64. Rabinovich, V., Alexandrov, N., Alkhateeb, B.: Automotive Antenna Design and Applications. CRC Press, Boca Raton (2010)

    Book  Google Scholar 

  65. Rahimzei, E., Sann, K., Vogel, M.: Kompendium: Li-ionen-batterien. Technical report, VDE Verband der Elektrotechnik (2015)

    Google Scholar 

  66. Reif, K.: Automobilelektronik, 5th edn. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-658-05048-1

    Book  Google Scholar 

  67. Reinhardt, D., Kucera, M.: Domain controlled architecture - a new approach for large scale software integrated automotive systems. In: 3rd International Conference on Pervasive Embedded Computing and Communication Systems, pp. 221–226 (2013)

    Google Scholar 

  68. Renner, I.: Methodische Unterstützung funktionsorientierter Baukastenentwicklung am Beispiel Automobil. Ph.D. thesis, Technische Universität München, München, May 2007

    Google Scholar 

  69. SAE international: Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles, September 2016

    Google Scholar 

  70. Schäuffele, J., Zurawka, T.: Automotive Software Engineering - Grundlagen, Prozesse, Methoden und Werzeuge effizient einsetzen, 5 (edn.). Springer Fachmedien Wiesbaden GmbH (2012)

    Google Scholar 

  71. Schmitz, C.: Method and apparatus for driver assistance, April 2011. https://www.google.com/patents/US8031063. US Patent 8,031,063

  72. Schofield, K., Larson, M., Vadas, K.: Vehicle headlight control using imaging sensor, August 1998. https://www.google.com/patents/US5796094. US Patent 5,796,094

  73. Seidel, W.: Process for controlling front or rear spoilers, September 2006. https://www.google.com/patents/US7113855. US Patent 7,113,855

  74. Stämpfle, M., Branz, W., et al.: Kollisionsvermeidung im längsverkehr-die vision vom unfallfreien fahren rückt näher. 3. Tagung Aktive Sicherheit durch Fahrerassistenz (2008)

    Google Scholar 

  75. Stiller, C., Färber, G., Kammel, S.: Cooperative cognitive automobiles. In: Proceedings of the 2007 IEEE Intelligent Vehicles Symposium, pp. 215–220, June 2007

    Google Scholar 

  76. Stolz, W., Kornhaas, R., Sommer, T.: Domain control units - the solution for future E/E architectures? In: SAE Technical Paper 2010–01-0686, pp. 221–226 (2010)

    Google Scholar 

  77. Streichert, T., Traub, M.: Elektrik/Elektronik-Architekturen im Kraftfahrzeug - Modellierung und Bewertung von Echtzeitsystemen. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-25478-9

    Book  Google Scholar 

  78. Strobel, S., Rösinger, K., Bröcker, M.: Radikale Innovtionen in derMobilität. Fuzzy-Logik basiertes Energiemanagement fürElektrofahrzeuge, pp. 211–224. Proff, H. (2014)

    Google Scholar 

  79. Takagi, M., Asano, T., Yamada, T.: Automotive vehicle with adjustable aerodynamic accessory and control therefor, March 1989. https://www.google.com/patents/US4810022. US Patent 4,810,022

  80. Tas, Ö.S., Kuhnt, F., Zöllner, J.M., Stiller, C.: Functional system architectures towards fully automated driving. In: 2016 IEEE Intelligent Vehicles Symposium (IV) (2016)

    Google Scholar 

  81. Tseng, H.E., Ashrafi, B., Madau, D., Brown, T.A., Recker, D.: The development of vehicle stability control at ford. IEEE/ASME Trans. Mechatron. 4(3), 223–234 (1999)

    Article  Google Scholar 

  82. van Zanten, A., Kost, F.: Handbuch Fahrerassistenzsysteme. Bremsenbasierte Assistenzfunktionen, pp. 356–394. Vieweg & Teubner Verlag, Springer Fachmedien, Wiesbaden (2012)

    Google Scholar 

  83. Vector Informatik GmbH: PREEvision User Manual Version 8.0. Stuttgart (2016)

    Google Scholar 

  84. van der Voort, M., Dougherty, M.S., van Maarseveen, M.: A prototype fuel-efficiency support tool. Transp. Res. Part C: Emerg. Technol. 9(4), 279–296 (2001). http://www.sciencedirect.com/science/article/pii/S0968090X00000383

  85. Wahl, H.G.: Optimale Regelung eines prädiktiven Energiemanagements von Hybridfahrzeugen. Ph.D. thesis, Karlsruher Institut für Technologie (2015)

    Google Scholar 

  86. Walker, P.D., Zhang, N., Tamba, R.: Control of gear shifts in dual clutch transmission powertrains. Mech. Syst. Signal Process. 25(6), 1923–1936 (2011)

    Article  Google Scholar 

  87. Walter, M., Fechner, T., Hellmann, W., Thiel, R.: Handbuch Fahrerassistenzsysteme. Lane Departure Warning, pp. 543–553. Vieweg & Teubner Verlag, Springer Fachmedien, Wiesbaden (2012)

    Chapter  Google Scholar 

  88. Weber, J.: Automotive Development Process. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01253-2

    Book  Google Scholar 

  89. Weber, M., Weisbrod, J.: Requirements engineering in automotive development - experience and challenges. In: IEEE Joint International Conference on Requirements Engineering (RE 2002) (2002)

    Google Scholar 

  90. Wiesenthal, M., Collenberg, H., Krimmel, H.: Aktive hinterachskinematik akc - ein beitrag zu fahrdynamik, sicherheit und komfort. In: 17. Aachener Kolloquium Fahrzeug- und Motorentechnik (2008)

    Google Scholar 

  91. Willats, R., et al.: Vehicle access control and start system, December 2003. https://www.google.com/patents/US20030222758. US Patent App. 10/348,233

  92. Winner, H., Danner, B., Steinle, J.: Handbuch Fahrerassistenzsysteme. Adaptive Cruise Control, pp. 478–521. Vieweg+Teubner Verlag, Wiesbaden (2012). https://doi.org/10.1007/978-3-8348-8619-4_33

    Chapter  Google Scholar 

  93. Woestman, J., Patil, P., Stunz, R., Pilutti, T.: Strategy to use an on-board navigation system for electric and hybrid electric vehicle energy management, 26 2002. https://www.google.com/patents/US6487477. US Patent 6,487,477

  94. Wolf, D., Hess, G., Twichel, J.: Automatic start/stop system and method for locomotive engines, September 2005. https://www.google.com/patents/US6941218. US Patent 6,941,218

  95. Zechmann, J., Irion, A.: Method and apparatus for controlling the brake system of a vehicle, January 2000. https://www.google.com/patents/US6009984. US Patent 6,009,984

  96. Zhang, R., Krishnan, A.: Using delta model for collaborative work of industrial large-scaled E/E architecture models. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 714–728. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24485-8_52

    Chapter  Google Scholar 

  97. Zhang, Y., Wang, W., Kobayashi, Y., Shirai, K.: Remaining driving range estimation of electric vehicle. In: 2012 IEEE International Electric Vehicle Conference, pp. 1–7, March 2012

    Google Scholar 

  98. Ziegler, J., et al.: Making bertha drive - an autonomous journey on a historic route. IEEE Intell. Transp. Syst. Mag. 6(2), 8–20 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Bach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bach, J., Otten, S., Sax, E. (2019). Classification of Automotive Electric/Electronic Features and the Consequent Hierarchization of the Logical System Architecture. In: Donnellan, B., Klein, C., Helfert, M., Gusikhin, O., Pascoal, A. (eds) Smart Cities, Green Technologies, and Intelligent Transport Systems. SMARTGREENS VEHITS 2017 2017. Communications in Computer and Information Science, vol 921. Springer, Cham. https://doi.org/10.1007/978-3-030-02907-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02907-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02906-7

  • Online ISBN: 978-3-030-02907-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics