Skip to main content

Stokes–Darcy Equations

  • Chapter
  • First Online:
Book cover Stokes–Darcy Equations

Part of the book series: Advances in Mathematical Fluid Mechanics ((LNMFM))

  • 879 Accesses

Abstract

Let \(\varOmega \subset \mathbb {R}^d\) be a Lipschitz domain split into two disjoint nonempty subdomains Ω p and Ω f which are Lipschitz, too. The index p refers to the Darcy subdomain where a porous medium is modeled, while the index f refers to the free flow domain with a Stokes model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Sometimes also called Beavers–Joseph–Saffman–Jones condition.

  2. 2.

    With this ψ it is \(a_{\mathrm {p}}(\varphi ,\psi ) = a_{\mathrm {p}}^R(\varphi ,\psi )\).

  3. 3.

    With this v it is .

  4. 4.

    The signs and positions of η f and η p are chosen such that the resulting system matches that in [DQV07] and [CGHW11].

  5. 5.

    For this approach it is assumed that Λ f = Λ p, see Sect. 6.6.8.

References

  1. Franco Brezzi and Michel Fortin. Mixed and hybrid finite element methods, volume 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York, 1991.

    Book  Google Scholar 

  2. Dietrich Braess. Finite elements. Cambridge University Press, Cambridge, third edition, 2007. Theory, fast solvers, and applications in elasticity theory, Translated from the German by Larry L. Schumaker.

    Google Scholar 

  3. Susanne C. Brenner and L. Ridgway Scott. The mathematical theory of finite element methods, volume 15 of Texts in Applied Mathematics. Springer, New York, third edition, 2008.

    Google Scholar 

  4. Yanzhao Cao, Max Gunzburger, Fei Hua, and Xiaoming Wang. Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition. Commun. Math. Sci., 8(1):1–25, 2010.

    Article  MathSciNet  Google Scholar 

  5. Wenbin Chen, Max Gunzburger, Fei Hua, and Xiaoming Wang. A parallel robin-robin domain decomposition method for the Stokes-Darcy system. SIAM J. Numerical Analysis, 49(3):1064–1084, 2011.

    Article  MathSciNet  Google Scholar 

  6. Yanzhao Cao, Max Gunzburger, Xiaoming He, and Xiaoming Wang. Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes-Darcy systems. Math. Comp., 83(288):1617–1644, 2014.

    Article  MathSciNet  Google Scholar 

  7. Philippe G. Ciarlet. The finite element method for elliptic problems, volume 40 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)].

    Google Scholar 

  8. Alfonso Caiazzo, Volker John, and Ulrich Wilbrandt. On classical iterative subdomain methods for the Stokes-Darcy problem. Comput. Geosci., 18(5):711–728, 2014.

    Article  MathSciNet  Google Scholar 

  9. Marco Discacciati, Alfio Quarteroni, and Alberto Valli. Robin-Robin domain decomposition methods for the Stokes-Darcy coupling. SIAM J. Numer. Anal., 45(3):1246–1268, 2007.

    Article  MathSciNet  Google Scholar 

  10. Carlo D’Angelo and Paolo Zunino. Robust numerical approximation of coupled Stokes and Darcy’s flows applied to vascular hemodynamics and biochemical transport. ESAIM, Math. Model. Numer. Anal., 45(3):447–476, 2011.

    Article  MathSciNet  Google Scholar 

  11. Gabriel N. Gatica, Ricardo Oyarzúa, and Francisco-Javier Sayas. Analysis of fully-mixed finite element methods for the Stokes-Darcy coupled problem. Math. Comp., 80(276):1911–1948, 2011.

    Article  MathSciNet  Google Scholar 

  12. Gabriel N. Gatica, Ricardo Oyarzúa, and Francisco-Javier Sayas. Convergence of a family of Galerkin discretizations for the Stokes-Darcy coupled problem. Numer. Methods Partial Differential Equations, 27(3):721–748, 2011.

    Article  MathSciNet  Google Scholar 

  13. Juan Galvis and Marcus Sarkis. Non-matching mortar discretization analysis for the coupling Stokes-Darcy equations. Electron. Trans. Numer. Anal., 26:350–384, 2007.

    MathSciNet  MATH  Google Scholar 

  14. Willi Jäger and Andro Mikelić. On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J. Appl. Math., 60(4):1111–1127, 2000.

    Article  MathSciNet  Google Scholar 

  15. I.P. Jones. Low Reynolds number flow past a porous spherical shell. Math. Proc. Cambridge Philos. Soc., 73:231–238, 1973.

    Article  Google Scholar 

  16. William J. Layton, Friedhelm Schieweck, and Ivan Yotov. Coupling fluid flow with porous media flow. SIAM J. Numer. Anal., 40(6):2195–2218 (2003), 2002.

    Article  MathSciNet  Google Scholar 

  17. Antonio Márquez, Salim Meddahi, and Francisco-Javier Sayas. Strong coupling of finite element methods for the Stokes-Darcy problem. IMA J. Numer. Anal., 35(2):969–988, 2015.

    Article  MathSciNet  Google Scholar 

  18. Iryna Rybak and Jim Magiera. A multiple-time-step technique for coupled free flow and porous medium systems. J. Comput. Phys., 272:327–342, 2014.

    Article  MathSciNet  Google Scholar 

  19. P.G. Saffman. On the boundary condition at the interface of a porous medium. Stud. Appl. Math., 50:93–101, 1971.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wilbrandt, U. (2019). Stokes–Darcy Equations. In: Stokes–Darcy Equations. Advances in Mathematical Fluid Mechanics(). Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-02904-3_6

Download citation

Publish with us

Policies and ethics