Skip to main content

Topological Baumslag Lemmas

  • Chapter
  • First Online:
  • 694 Accesses

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2231))

Abstract

This chapter deals with one of the principal technical tools of the monograph, namely an extension of Baumslag’s Lemma. The following are some of the main ingredients in this chapter:

  1. 1.

    A Topological Baumslag Lemma, which gives sufficient conditions to guarantee nontriviality of a word

    $$\displaystyle w (t_1,\cdots , t_k) = g_1 \mu _1(t_1) \cdots g_k \mu _k (t_k) $$

    for large values of the parameters t i. Here the μ j(t j)s are one-parameter subgroups of a continuous (possibly analytic) group. The proof is quite general and reminiscent of Tits’ proof (Tits, J Algebra 20(2):250–270, 1972) of the Tits’ alternative for discrete linear groups in that the underlying idea consists of a ping-pong argument.

  2. 2.

    The one-parameter subgroups are often (generalizations of) parabolic and hyperbolic one-parameter subgroups of \( \operatorname {\mathrm {PSL}}_2(\mathbb {R})\). To handle elliptic subgroups we use a complexification and Zariski density trick by embedding \( \operatorname {\mathrm {PSL}}_2(\mathbb {R})\) in \( \operatorname {\mathrm {PSL}}_2(\mathbb {C})\) and reduce the elliptic case to the hyperbolic one (Lemma 3.4).

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   14.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   19.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. Barlev, T. Gelander, Compactifications and algebraic completions of limit groups. J. Anal. Math. 112, 261–287 (2010). MR 2763002

    Article  MathSciNet  Google Scholar 

  2. M. Bestvina, K. Fujiwara, Bounded cohomology of subgroups of mapping class groups. Geom. Topol. 6, 69–89 (2002). MR 1914565

    Article  MathSciNet  Google Scholar 

  3. B.H. Bowditch, Tight geodesics in the curve complex. Invent. Math. 171(2), 281–300 (2008). MR 2367021 (2008m:57040)

    Article  MathSciNet  Google Scholar 

  4. M.R. Bridson, A. Haefliger, Metric Spaces of Non-positive Curvature. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319 (Springer, Berlin, 1999)

    Google Scholar 

  5. F. Dahmani, V. Guirardel, D. Osin, Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces. Mem. Am. Math. Soc. 245(1156), v+152 (2017). MR 3589159

    Article  MathSciNet  Google Scholar 

  6. É. Ghys, P. de la Harpe (eds.), Sur les groupes hyperboliques d’après Mikhael Gromov. Progress in Mathematics, vol. 83 (Birkhäuser Boston Inc., Boston, 1990). Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988. MR 1086648 (92f:53050)

    Google Scholar 

  7. M. Gromov, Hyperbolic groups, in Essays in Group Theory. Mathematical Sciences Research Institute Publications, vol. 8 (Springer, New York, 1987), pp. 75–263

    Chapter  Google Scholar 

  8. D. Groves, H. Wilton, Conjugacy classes of solutions to equations and inequations over hyperbolic groups. J. Topol. 3(2), 311–332 (2010). MR 2651362 (2012a:20067)

    Article  MathSciNet  Google Scholar 

  9. U. Hamenstädt, Bounded cohomology and isometry groups of hyperbolic spaces. J. Eur. Math. Soc. 10(2), 315–349 (2008). MR 2390326

    Google Scholar 

  10. A.E. Kent, C.J. Leininger, Subgroups of mapping class groups from the geometrical viewpoint, in In the Tradition of Ahlfors-Bers. IV. Contemporary Mathematics, vol. 432 (American Mathematical Society, Providence, 2007), pp. 119–141. MR 2342811

    Google Scholar 

  11. S.-h. Kim, On right-angled Artin groups without surface subgroups. Groups Geom. Dyn. 4(2), 275–307 (2010). MR 2595093 (2011d:20073)

    Google Scholar 

  12. S.-h. Kim, T. Koberda, The geometry of the curve graph of a right-angled Artin group. Int. J. Algebra Comput. 24(2), 121–169 (2014). MR 3192368

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, Sh., Koberda, T., Mj, M. (2019). Topological Baumslag Lemmas. In: Flexibility of Group Actions on the Circle. Lecture Notes in Mathematics, vol 2231. Springer, Cham. https://doi.org/10.1007/978-3-030-02855-8_3

Download citation

Publish with us

Policies and ethics