Skip to main content

Monocular Depth Perception on a Micro-UAV Using Convolutional Neuronal Networks

  • Conference paper
  • First Online:
Ubiquitous Networking (UNet 2018)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 11277))

Included in the following conference series:

  • 855 Accesses

Abstract

In this article, we present the use of depth estimation in real time using the on-board camera in a micro-UAV through convolutional neuronal networks. The experiments and results of the implementation of the system in a micro-UAV are presented to verify the unsupervised model improvement with monocular cameras and the error regarding real model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguilar, W.G., Angulo, C.: Real-time model-based video stabilization for microaerial vehicles. Neural Process. Lett. 43(2), 459–477 (2016)

    Article  Google Scholar 

  2. Aguilar, W.G., Angulo, C.: Real-time video stabilization without phantom movements for micro aerial vehicles. EURASIP J. Image Video Process. 2014(1), 46 (2014)

    Article  Google Scholar 

  3. Gageik, N., Benz, P., Montenegro, S.: Obstacle detection and collision avoidance for a UAV with complementary low-cost sensors. IEEE Access 3, 599–609 (2015)

    Article  Google Scholar 

  4. Yang, S., Konam, S., Ma, C., Rosenthal, S., Veloso, M., Scherer, S.: Obstacle avoidance through deep networks based intermediate perception (2017)

    Google Scholar 

  5. Aguilar, W.G., et al.: Pedestrian detection for UAVs using cascade classifiers and saliency maps. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10306, pp. 563–574. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59147-6_48

    Chapter  Google Scholar 

  6. Aguilar, W.G., et al.: Cascade classifiers and saliency maps based people detection. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10325, pp. 501–510. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60928-7_42

    Chapter  Google Scholar 

  7. Aguilar, W.G., Rodríguez, G.A., Álvarez, L., Sandoval, S., Quisaguano, F., Limaico, A.: Visual SLAM with a RGB-D camera on a quadrotor UAV using on-board processing. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10306, pp. 596–606. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59147-6_51

    Chapter  Google Scholar 

  8. Aguilar, W.G., Rodríguez, G.A., Álvarez, L., Sandoval, S., Quisaguano, F., Limaico, A.: Real-iime 3D modeling with a RGB-D camera and on-board processing. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10325, pp. 410–419. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60928-7_35

    Chapter  Google Scholar 

  9. Aguilar, W.G., Rodríguez, G.A., Álvarez, L., Sandoval, S., Quisaguano, F., Limaico, A.: On-board visual SLAM on a UGV using a RGB-D camera. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds.) ICIRA 2017. LNCS (LNAI), vol. 10464, pp. 298–308. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65298-6_28

    Chapter  Google Scholar 

  10. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency (2016)

    Google Scholar 

  11. Aguilar, W.G., Morales, S.G.: 3D environment mapping using the Kinect V2 and path planning based on RRT algorithms. Electronics 5(4), 70 (2016)

    Article  Google Scholar 

  12. Aguilar, W.G., Morales, S., Ruiz, H., Abad, V.: RRT* GL based optimal path planning for real-time navigation of UAVs. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10306, pp. 585–595. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59147-6_50

    Chapter  Google Scholar 

  13. Giusti, A., et al.: A machine learning approach to visual perception of forest trails for mobile robots. IEEE Robot. Autom. Lett. 1(2), 661–667 (2016)

    Article  Google Scholar 

  14. Saxena, A., Chung, S.H., Ng, A.Y.: Learning depth from single monocular images. In: Advances in Neural Information Processing Systems, vol. 18, pp. 1161–1168 (2006)

    Google Scholar 

  15. Mori, T., Scherer, S.: The First results in detecting and avoiding frontal obstacle from monocular camera for micro unmanned aerial vehicles. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), vol. 53, no. 9, pp. 1689–1699 (2013)

    Google Scholar 

  16. Montgomery, J., Roumeliotis, S.I., Johnson, A., Matthies, L.: The jet propulsion laboratory autonomous helicopter testbed: a platform for planetary exploration technology research and development. J. Feild Robot. 23(2), 245–267 (2006)

    Article  Google Scholar 

  17. Aguilar, W.G., Salcedo, V.S., Sandoval, D.S., Cobeña, B.: Developing of a video-based model for UAV autonomous navigation. In: Barone, D.A.C., Teles, E.O., Brackmann, C.P. (eds.) LAWCN 2017. CCIS, vol. 720, pp. 94–105. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71011-2_8

    Chapter  Google Scholar 

  18. Aguilar, W.G., Casaliglla, V.P., Pólit, J.L.: Obstacle avoidance based-visual navigation for micro aerial vehicles. Electronics 6(1), 10 (2017)

    Article  Google Scholar 

  19. Aguilar, W.G., Casaliglla, V.P., Pólit, J.L., Abad, V., Ruiz, H.: Obstacle avoidance for flight safety on unmanned aerial vehicles. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10306, pp. 575–584. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59147-6_49

    Chapter  Google Scholar 

  20. Hartley, R., Zisserman, A.: Multiple view geometry, vol. 53, no. 9 (2003)

    Google Scholar 

Download references

Acknowledgement

This work is part of the project Perception and localization system for autonomous navigation of rotor micro aerial vehicle in gps-denied environments, VisualNavDrone, 2016-PIC-024, from the Universidad de las Fuerzas Armadas ESPE, directed by Dr. Wilbert G. Aguilar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilbert G. Aguilar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aguilar, W.G., Quisaguano, F.J., Alvarez, L.G., Pardo, J.A., Proaño, Z. (2018). Monocular Depth Perception on a Micro-UAV Using Convolutional Neuronal Networks. In: Boudriga, N., Alouini, MS., Rekhis, S., Sabir, E., Pollin, S. (eds) Ubiquitous Networking. UNet 2018. Lecture Notes in Computer Science(), vol 11277. Springer, Cham. https://doi.org/10.1007/978-3-030-02849-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02849-7_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02848-0

  • Online ISBN: 978-3-030-02849-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics