Skip to main content

On-Board Target Virtualization Using Image Features for UAV Autonomous Tracking

  • Conference paper
  • First Online:
Ubiquitous Networking (UNet 2018)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 11277))

Included in the following conference series:

Abstract

This paper describes a proposal of solution for target visual loss in autonomous navigation of UAVs by using artificial. Tests of target maintenance and position recovery have been included along with the sequence of images that verify the method performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Limnaios, G.: Current usage of unmanned aircraft systems (UAS) and future challenges: a mission oriented simulator for UAS as a tool for design and performance evaluation. J. Comput. Model 4(1), 167–188 (2014)

    Google Scholar 

  2. Achille, C., et al.: UAV-based photogrammetry and integrated technologies for architectural applications—methodological strategies for the after-quake survey of vertical structures in Mantua (Italy). Sensors 15(7), 15520–15539 (2015)

    Article  Google Scholar 

  3. Hassanalian, M., Abdelkefi, A.: Classifications, applications, and design challenges of drones: a review. Prog. Aerosp. Sci. 91, 99–131 (2017)

    Article  Google Scholar 

  4. Aguilar, W.G., Salcedo, V.S., Sandoval, D.S., Cobeña, B.: Developing of a video-based model for UAV autonomous navigation. In: Barone, D.A.C., Teles, E.O., Brackmann, C.P. (eds.) LAWCN 2017. CCIS, vol. 720, pp. 94–105. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71011-2_8

    Chapter  Google Scholar 

  5. Duffy, J.P., et al.: Location, location, location: considerations when using lightweight drones in challenging environments. Remote Sens. Ecol. Conserv. 1–13 (2017)

    Google Scholar 

  6. Aguilar, W.G., et al.: Cascade classifiers and saliency maps based people detection. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10325, pp. 501–510. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60928-7_42

    Chapter  Google Scholar 

  7. Aguilar, W.G., Angulo, C.: Real-time model-based video stabilization for microaerial vehicles. Neural Process. Lett. 43(2), 459–477 (2016)

    Article  Google Scholar 

  8. Aguilar, W.G., et al.: Pedestrian detection for UAVs using cascade classifiers and saliency maps. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10306, pp. 563–574. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59147-6_48

    Chapter  Google Scholar 

  9. Tribukait, A., Bergsten, E., Eiken, O.: Pitch-plane angular displacement perception during helicopter flight and gondola centrifugation. Aerosp. Med. Hum. Perform. 87(10), 852–861 (2016)

    Article  Google Scholar 

  10. Márquez Pardo, I.: Visual control of a mobile robot by means of an overhead view (Bachelor’s thesis) (2016)

    Google Scholar 

  11. Arróspide, J., Salgado, L.: Video based vehicle detection and tracking for driver assistance systems. Securitas Vialis 7(1–3), 41–49 (2015)

    Article  Google Scholar 

  12. Urzua, S., Munguía, R., Grau, A.: Vision-based SLAM system for MAVs in GPS-denied environments. Int. J. Micro Air Veh. 9, 283–296 (2017)

    Article  Google Scholar 

  13. Revollo Sarmiento, N., Delrieux, C., Perillo, G.M.: Software de visión por computador en sistemas de monitoreo ambiental. In: XIV Workshop de Investigadores en Ciencias de la Computación (2012)

    Google Scholar 

  14. Rituerto, A.: Modeling the environment with egocentric vision systems. ELCVIA Electron. Lett. Comput. Vis. Image Anal. 14(3), 49–51 (2015)

    Google Scholar 

  15. Rituerto, A., Puig, L., Guerrero, J.J.: Comparison of omnidirectional and conventional monocular systems for visual slam. In: 10th OMNIVIS with RSS (2010)

    Google Scholar 

  16. Grenzdörffer, G.J., Niemeyer, F.: UAV based BRDF-measurements of agricultural surfaces with PFIFFikus. Int. Arch. Photogr. Remote Sens. Spat. Inf. Sci. 38(1/C22), 229–234 (2011)

    Google Scholar 

  17. Remondino, F., Barazzetti, L., Nex, F., Scaioni, M., Sarazzi, D.: UAV photogrammetry for mapping and 3D modeling–current status and future perspectives. Int. Arch. Photogr. Remote Sens. Spat. Inf. Sci. 38(1), C22 (2011)

    Google Scholar 

  18. Guzmán, D.A.I., Alarcón, J.R.C., Torres, A.A., Bárcenas, M.A.M.: Design of an artificial neural network to detect obstacles on highways through the flight of an UAV. Res. Comput. Sci. 105, 31–40 (2015)

    Google Scholar 

  19. Paillard, A.C., Quarck, G., Denise, P.: Sensorial countermeasures for vestibular spatial disorientation. Aviat. Space environ. Med. 85(5), 563–567 (2014)

    Article  Google Scholar 

  20. Clarke, R.: Understanding the drone epidemic. Comput. Law Secur. Rev. 30(3), 230–246 (2014)

    Article  Google Scholar 

  21. Charmette, B., Royer, E., Chausse, F.: Vision-based robot localization based on the efficient matching of planar features. Mach. Vis. Appl. 27(4), 415–436 (2016)

    Article  Google Scholar 

  22. Chmaj, G., Selvaraj, H.: Distributed processing applications for UAV/drones: a survey. In: Selvaraj, H., Zydek, D., Chmaj, G. (eds.) Progress in Systems Engineering. AISC, vol. 366, pp. 449–454. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-08422-0_66

    Chapter  Google Scholar 

  23. Derpanis, K.G.: Overview of the RANSAC algorithm. Image Rochester NY 4(1), 2–3 (2010)

    Google Scholar 

  24. Kendoul, F.: Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems. J. Field Robot. 29(2), 315–378 (2012)

    Article  Google Scholar 

  25. Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a compact image representation. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3304–3311. IEEE (2010)

    Google Scholar 

  26. Awad, A.I., Hassaballah, M.: Image Feature Detectors and Descriptors: Foundations and Applications, vol. 630. Springer, Heidelberg (2016)

    Book  Google Scholar 

  27. Sayem, A.S.S.: Vision-Aided Navigation for Autonomous Vehicles Using Tracked Feature Points (2016)

    Google Scholar 

  28. Zhang, X., Wang, X., Yuan, X., Wang, S.: An improved SIFT algorithm in the application of close-range stereo image matching. In: IOP Conference Series: Earth and Environmental Science, vol. 46, No. 1, p. 012009. IOP Publishing (2016)

    Google Scholar 

  29. Al-khafaji, S.L., Zhou, J., Zia, A., Liew, A.W.C.: Spectral-spatial scale invariant feature transform for hyperspectral images. IEEE Trans. Image Process. 27, 837–850 (2017)

    Article  MathSciNet  Google Scholar 

  30. Lowe, D.: Object recognition from local scale-invariant features. In: Proceedings of IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)

    Google Scholar 

  31. Aguilar, W.G., Angulo, C.: Real-time video stabilization without phantom movements for micro aerial vehicles. EURASIP J. Image Video Process. 12(1), 46 (2014)

    Article  Google Scholar 

  32. Zhu, Y., Shen, X., Chen, H.: Copy-move forgery detection based on scaled ORB. Multimed. Tools Appl. 75(6), 3221–3233 (2016)

    Article  Google Scholar 

  33. Xie, S., Zhang, W., Ying, W., Zakim, K.: Fast detecting moving objects in moving background using ORB feature matching. In: 2013 Fourth International Conference on Intelligent Control and Information Processing (ICICIP), pp. 304–309. IEEE (2013)

    Google Scholar 

  34. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: ICCV (2011)

    Google Scholar 

  35. Ma, Y., Soatto, S., Kosecka, J., Sastry, S.S.: An Invitation to 3-D Vision: From Images to Geometric Models, vol. 26. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  36. Aguilar, W.G., Casaliglla, V.P., Pólit, J.L.: Obstacle avoidance based-visual navigation for micro aerial vehicles. Electronics 6(1), 10 (2017)

    Article  Google Scholar 

  37. Aguilar, W.G., Casaliglla, V.P., Pólit, J.L., Abad, V., Ruiz, H.: Obstacle avoidance for flight safety on unmanned aerial vehicles. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10306, pp. 575–584. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59147-6_49

    Chapter  Google Scholar 

  38. Engel, J., Sturm, J., Cremers, D.: Accurate figure flying with a quadrocopter using onboard visual and inertial sensing. Imu 320, 240 (2012)

    Google Scholar 

  39. Engel, J., Sturm, J., Cremers, D.: Camera-based navigation of a low-cost quadrocopter. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2815–2821. IEEE (2012)

    Google Scholar 

  40. Papakonstantinou, A., Topouzelis, K., Pavlogeorgatos, G.: Coastline zones identification and 3D coastal mapping using UAV spatial data. ISPRS Int. J. Geo-Inf. 5(6), 75 (2016)

    Article  Google Scholar 

  41. Urzua, S., Munguía, R., Grau, A.: Vision-based SLAM system for MAVs in GPS-denied environments. Int. J. Micro Air Veh. 9(4), 283–296 (2017)

    Article  Google Scholar 

  42. Aguilar, W.G., Rodríguez, G.A., Álvarez, L., Sandoval, S., Quisaguano, F., Limaico, A.: Visual SLAM with a RGB-D camera on a quadrotor UAV using on-board processing. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10306, pp. 596–606. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59147-6_51

    Chapter  Google Scholar 

  43. Aguilar, W.G., Rodríguez, G.A., Álvarez, L., Sandoval, S., Quisaguano, F., Limaico, A.: Real-time 3D modeling with a RGB-D camera and on-board processing. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10325, pp. 410–419. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60928-7_35

    Chapter  Google Scholar 

  44. Aguilar, W.G., Rodríguez, G.A., Álvarez, L., Sandoval, S., Quisaguano, F., Limaico, A.: On-board visual SLAM on a UGV using a RGB-D camera. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds.) ICIRA 2017. LNCS (LNAI), vol. 10464, pp. 298–308. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65298-6_28

    Chapter  Google Scholar 

  45. Aguilar, W.G., Morales, S.G.: 3D environment mapping using the Kinect V2 and path planning based on RRT algorithms. Electronics 5(4), 70 (2016)

    Article  Google Scholar 

  46. Aguilar, W.G., Morales, S., Ruiz, H., Abad, V.: RRT* GL based optimal path planning for real-time navigation of UAVs. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10306, pp. 585–595. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59147-6_50

    Chapter  Google Scholar 

  47. Forster, C., Lynen, S., Kneip, L., Scaramuzza, D.: Collaborative monocular slam with multiple micro aerial vehicles. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3962–3970. IEEE, November 2013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilbert G. Aguilar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salcedo, V.S., Aguilar, W.G., Cobeña, B., Pardo, J.A., Proaño, Z. (2018). On-Board Target Virtualization Using Image Features for UAV Autonomous Tracking. In: Boudriga, N., Alouini, MS., Rekhis, S., Sabir, E., Pollin, S. (eds) Ubiquitous Networking. UNet 2018. Lecture Notes in Computer Science(), vol 11277. Springer, Cham. https://doi.org/10.1007/978-3-030-02849-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02849-7_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02848-0

  • Online ISBN: 978-3-030-02849-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics