Skip to main content

Evaluation of Information Retrieval Algorithms Within an Energy Documents Repository

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10633))

Included in the following conference series:


The development of energy and electricity sectors have result in a cumulus of technical and scientific documents related with several topics. The large activity in these sectors results in a growing repository, where the search for information based on keywords is not sufficient. We need a way to find relevant documents given a need of information. Information retrieval is the process of finding unstructured documents to satisfy an information need from within large collections. Several information retrieval has been proposed, we have analyzed them. Base on this analysis, we are working on an information retrieval model according to specific needs of energy and electricity sectors. We have evaluated the vector Space algorithm, probabilistic algorithm and our proposal. Here, we present the results of the evaluation and our preliminary proposal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


  1. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge UP, Cambridge (2009). Online Edition

    Google Scholar 

  2. Ponte, J.M.: A language modeling approach to information retrieval (1998)

    Google Scholar 

  3. Hawking, D., Moffat, A., Trotman, A.: Inf. Retr. 20, 169 (2017)

    Article  Google Scholar 

  4. Abadal, E., Codina, L.: Information retrieval, documented databases: characteristics, function and method, Chap. 2, pp. 29–92 (2005)

    Google Scholar 

  5. Van Rijsbergen, C.J.: Information Retrieval, 2nd edn. Butterworth & Co (Publishers) Ltd., London (1979)

    MATH  Google Scholar 

  6. Vallez, M., Pedraza-Jimenez, R.: Natural language processing in textual information retrieval and related topics, no. 5 (2007). Online version

    Google Scholar 

  7. Nunes, S.: State of the art in web information retrieval (2006)

    Google Scholar 

  8. Khan, A., Salim, N.: A review on abstractive summarization methods. J. Theoret. Appl. Inf. Technol. 59(1), 64–72 (2014)

    Google Scholar 

  9. Rahman, K.M., Khamparia, A.: Techniques, applications and challenges of opinion mining. IJCTA 9(41), 455–461 (2016)

    Google Scholar 

  10. Hui, K., Yates, A., Berberich, K., De Melo, G.: Position-aware representations for relevance matching in neural information retrieval (2017)

    Google Scholar 

  11. Craswell, N., Croft, W.B., Guo, J., Mitra, B., De Rijke, M.: Report on the SIGIR 2016 Workshop on Neural Information Retrieval (Neu-IR) (2016)

    Google Scholar 

  12. Steven, W.: Boolean operations, Information Retrieval Data Structures and Algorithms. Prentice-Hall, Upper Saddle River (1992)

    Google Scholar 

  13. Méndez, F.J.M.: Recuperación de información: modelos, sistemas y evaluación. KIOSKO JMC, Murcia (2004)

    Google Scholar 

  14. Chen, H.: Machine learning for information retrieval: neural networks, symbolic learning, and genetic algorithms (1995)

    Article  Google Scholar 

  15. Porter, M. F.: Snowball: a language for stemming algorithms (2001)

    Google Scholar 

  16. Greenwood, M.A.: Implementing a vector space document retrieval system (2002)

    Google Scholar 

Download references


Authors would like to thank to Publication Department of the Instituto Nacional de Electricidad y Energías Limpias for its support in the development of this research.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Yasmín Hernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Márquez, D., Hernández, Y., Ochoa-Ortiz, A. (2018). Evaluation of Information Retrieval Algorithms Within an Energy Documents Repository. In: Castro, F., Miranda-Jiménez, S., González-Mendoza, M. (eds) Advances in Computational Intelligence. MICAI 2017. Lecture Notes in Computer Science(), vol 10633. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02839-8

  • Online ISBN: 978-3-030-02840-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics