Design of Blind Robust Estimator for Smart Sensors

  • Miguel Vazquez-Olguin
  • Yuriy S. ShmaliyEmail author
  • Oscar Ibarra-Manzano
  • Luis Javier Morales-Mendoza
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10633)


Efficient implementation of low cost transducers for industrial applications requires smart sensor with embedded accurate and blind filtering algorithms. In this paper an iterative, blind, and unbiased finite impulse response (UFIR) filter having prediction capabilities is proposed as an alternative to the Kalman filter (KF) for smart sensors design. The robustness of the UFIR filter is proved analytically. The predictive properties of UFIR filter allow getting a high accuracy and precision when measurements are provided with missing data, which is demonstrated based on a short-time and long-time temperature probing.


  1. 1.
    Giachino, J.M.: Smart sensors. Sens. Actuators 10(3–4), 239–248 (1986)CrossRefGoogle Scholar
  2. 2.
    Frank, R.: Understanding Smart Sensors. Artech House, Northwood (2000)CrossRefGoogle Scholar
  3. 3.
    Song, E.Y., Lee, K.: Understanding IEEE 1451-networked smart transducer interface standard - what is a smart transducer? IEEE Instrum. Meas. Mag. 11(2), 11–17 (2008)CrossRefGoogle Scholar
  4. 4.
    Swanson, D.C.: Signal Processing for Pntelligent Sensor Systems with MATLAB, 2nd edn. CRC Press, Boca Raton (2011)Google Scholar
  5. 5.
    Kirianaki, N.V., Yurish, S.Y., Shpak, N.O., Deynega, V.P.: Data Acquisition and Signal Processing for Smart Sensors. Wiley, Chichester (2002)CrossRefGoogle Scholar
  6. 6.
    Zhao, F., Guibas, L.J.: Wireless Sensor Networks: An Information Processing Approach. Elsevier, Amsterdam (2004)Google Scholar
  7. 7.
    Vazquez-Olguin, M.A., Shmaliy, Y.S., Ibarra-Manzano, O.: Blind robust estimation with missing data for smart sensors using UFIR filtering. IEEE Sens. J. 17(6), 1819–1827 (2017)CrossRefGoogle Scholar
  8. 8.
    Won, S.H.P., Golnaraghi, F., Melek, W.W.: A fastening tool tracking system using an IMU and a position sensor with Kalman filters and a fuzzy expert system. IEEE Trans. Ind. Electron. 56(5), 1782–1792 (2009)CrossRefGoogle Scholar
  9. 9.
    Sabatelli, S., Galgani, M., Fanucci, L., Rocchi, A.: A double-stage Kalman filter for orientation tracking with an integrated processor in 9-D IMU. IEEE Trans. Instrum. Meas. 62(3), 590–598 (2013)CrossRefGoogle Scholar
  10. 10.
    Taghirad, H.D., Belanger, P.R.: Torque ripple and misalignment torque compensation for the built-in torque sensor of harmonic drive systems. IEEE Trans. Instrum. Meas. 47(1), 309–315 (1998)CrossRefGoogle Scholar
  11. 11.
    Zhuang, Y., Li, Y., Qi, L., Lan, H., Yang, J., El-Sheimy, N.: A two-filter integration of MEMS sensors and WiFi fingerprinting for indoor positioning. IEEE Sens.S J. 16(13), 5125–5126 (2016)CrossRefGoogle Scholar
  12. 12.
    Simon, D.: Optimal Estimation: Kalman, \(H_\infty \), and nOnlinear Approaches. Wiley, Hoboken (2006)CrossRefGoogle Scholar
  13. 13.
    Jazwinski, A.H.: Stochastic Processes and Filtering Theory. Academic, New York (1970)zbMATHGoogle Scholar
  14. 14.
    Kwon, W.H., Han, S.: Receding Horizon Control: Model pRedictive Control for State Models. Springer, London (2005). Scholar
  15. 15.
    Shmaliy, Y.S., Ibarra-Manzano, O.: Time-variant linear optimal finite impulse response estimator for discrete state-space models. Int. J. Adapt. Control. Signal Process. 26(2), 95–104 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kwon, W.H., Kim, P.S., Park, P.: A receding horizon Kalman FIR filter for linear continuous-time systems. IEEE Trans. Autom. Control. 44(11), 2115–2120 (1999)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Han, S.H., Kwon, W.H., Kim, P.S.: Quasi-deadbeat minimax filters for deterministic state space models. IEEE Trans. Autom. Control. 47(11), 1904–1908 (2002)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Shmaliy, Y.S.: Linear optimal FIR estimation of discrete time-invariant state-space models. IEEE Trans. Signal Process. 58(6), 3086–3096 (2010)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Shmaliy, Y.S., Arceo-Miquel, L.: Efficient predictive estimator for holdover in GPS-based clock synchronization. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 55(10), 2131–2139 (2008)CrossRefGoogle Scholar
  20. 20.
    Zhao, S., Shmaliy, Y.S., Liu, F.: Fast computation of discrete optimal FIR estimates in white gaussian noise. IEEE Signal Process. Lett. 22(6), 718–722 (2015)CrossRefGoogle Scholar
  21. 21.
    Zhao, S., Shmaliy, Y.S., Liu, F.: Fast Kalman-like optimal unbiased FIR filtering with applications. IEEE Trans. Signal Process. 64(9), 2284–2297 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Vazquez-Olguin, M., Shmaliy, Y.S., Ibarra-Manzano, O.: Distributed unbiased FIR filtering with average consensus on measurements for WSNs. IEEE Trans. Ind. Inform. 13(3), 1440–1447 (2017)CrossRefGoogle Scholar
  23. 23.
    Fu, J.B., Sun, J., Fei, G., Lu, S.: Maneuvering target tracking with improved unbiased FIR filter. In: 2014 International Radar Conference, pp. 1–5, October 2014Google Scholar
  24. 24.
    Pak, J.M., Ahn, C.K., Shmaliy, Y.S., Shi, P., Lim, M.T.: Switching extensible FIR filter bank for adaptive horizon state estimation with application. IEEE Trans. Control. Syst. Technol. 24(3), 1052–1058 (2016)CrossRefGoogle Scholar
  25. 25.
    Ramirez-Echeverria, F., Sarr, A., Shmaliy, Y.S.: Optimal memory for discrete-time FIR filters in state space. IEEE Trans. Signal Process. 62(3), 557–561 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Shmaliy, Y.S., Khan, S.H., Zhao, S., Ibarra-Manzano, O.: General unbiased FIR filter with applications to GPS-based steering of oscillator frequency. IEEE Trans. Control. Syst. Technol. 25(3), 1141–1148 (2017)CrossRefGoogle Scholar
  27. 27.
    Shmaliy, Y.S., Ibarra-Manzano, O.: Noise power gain for discrete-time FIR estimators. IEEE Trans. Signal Process. 18(4), 207–210 (2011)CrossRefGoogle Scholar
  28. 28.
    Shmaliy, Y.S.: An iterative Kalman-like algorithm ignoring noise and initial conditions. IEEE Trans. Signal Process. 59(6), 2465–2473 (2011)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Shmaliy, Y.S., Khan, S., Zhao, S.: Ultimate iterative UFIR filtering algorithm. Measurement 92, 236–242 (2016)CrossRefGoogle Scholar
  30. 30.
    Sima, V.: Algorithms for Linear-Quadratic Optimization. Marcel Dekker, New York (1996)zbMATHGoogle Scholar
  31. 31.
    Kailath, T., Sayed, A.H., Hassibi, B.: Linear Estimation. Prentice-Hall, Upper Saddle River (2000)zbMATHGoogle Scholar
  32. 32.
    Ahn, C.K., Han, S., Kwon, W.H.: H\(_\infty \) FIR filters for linear continuous-time state-space systems. IEEE Signal Process. Lett. 13(9), 557–560 (2006)CrossRefGoogle Scholar
  33. 33.
    Ahn, C.K.: Strictly passive FIR filtering for state-space models with external disturbance. AEU-Int. J. Electron. Commun. 66(11), 944–948 (2012)CrossRefGoogle Scholar
  34. 34.
    Pak, J.M., Ahn, C.K., Lim, M.T., Song, M.K.: Horizon group shift FIR filter: alternative nonlinear filter using finite recent measurements. Measurement 57, 33–45 (2014)CrossRefGoogle Scholar
  35. 35.
    UCI Machine Learning Repository: Air Quality Data Set. University of California, Irvine, CA, USA, June 2017.
  36. 36.
    De Vito, S., Massera, E., Piga, M., Martinotto, L., Di Francia, G.: On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring scenario. Sens. Actuators B 129(2), 750–757 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Miguel Vazquez-Olguin
    • 1
  • Yuriy S. Shmaliy
    • 1
    Email author
  • Oscar Ibarra-Manzano
    • 1
  • Luis Javier Morales-Mendoza
    • 2
  1. 1.Universidad de GuanajuatoSalamancaMexico
  2. 2.Universidad VeracruzanaPoza RicaMexico

Personalised recommendations