World Health Organization: Global status report on road safety 2015. World Health Organization (2015)
Google Scholar
Peden, M., Toroyan, T., Krug, E., Iaych, K.: The status of global road safety: the agenda for sustainable development encourages urgent action. J. Australas. Coll. Road Saf. 27, 37 (2016)
Google Scholar
Arvind, P.D., Jivaji, M.J., Romi, K., Kamble, P.: Accident informer and prevention system. Int. J. Eng. Sci. 7, 4772 (2017)
Google Scholar
Murata, A., Urakami, Y., Moriwaka, M.: An attempt to prevent traffic accidents due to drowsy driving-prediction of drowsiness by Bayesian estimation. In: 2014 Proceedings of the SICE Annual Conference (SICE), pp. 1708–1715. IEEE (2014)
Google Scholar
Ahmed, R., Emon, K.E.K., Hossain, M.F.: Robust driver fatigue recognition using image processing. In: 2014 International Conference on Informatics, Electronics & Vision (ICIEV), pp. 1–6. IEEE (2014)
Google Scholar
Gonçalves, M., et al.: Sleepiness at the wheel across Europe: a survey of 19 countries. J. Sleep Res. 24, 242–253 (2015)
CrossRef
Google Scholar
Toda, T., Suzuki, K., Chen, G., Takami, I.: Robust control of active suspension—Improvement of ride comfort and driving stability using half car model. In: 2015 54th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), pp. 548–553. IEEE (2015)
Google Scholar
Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D., Babiloni, F.: Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neurosci. Biobehav. Rev. 44, 58–75 (2014)
CrossRef
Google Scholar
Correa, A.G., Orosco, L., Laciar, E.: Automatic detection of drowsiness in EEG records based on multimodal analysis. Med. Eng. Phys. 36, 244–249 (2014)
CrossRef
Google Scholar
Jo, J., Lee, S.J., Park, K.R., Kim, I.-J., Kim, J.: Detecting driver drowsiness using feature-level fusion and user-specific classification. Expert Syst. Appl. 41, 1139–1152 (2014)
CrossRef
Google Scholar
Saini, V., Saini, R.: Driver drowsiness detection system and techniques: a review. Int. J. Comput. Sci. Inf. Technol. 5, 4245–4249 (2014)
Google Scholar
Viljoen, E., Visser, J., Koen, N., Musekiwa, A.: A systematic review and meta-analysis of the effect and safety of ginger in the treatment of pregnancy-associated nausea and vomiting. Nutr. J. 13, 20 (2014)
CrossRef
Google Scholar
Veenendaal, A., Daly, E., Jones, E., Gang, Z., Vartak, S., Patwardhan, R.S.: Multi-view point drowsiness and fatigue detection. Comput. Sci. Emerg. Res. J. 2 (2014)
Google Scholar
Murata, A., Naitoh, K., Karwowski, W.: A method for predicting the risk of virtual crashes in a simulated driving task using behavioural and subjective drowsiness measures. Ergonomics 60, 714–730 (2017)
CrossRef
Google Scholar
Dissanayaka, C., et al.: Comparison between human awake, meditation and drowsiness EEG activities based on directed transfer function and MVDR coherence methods. Med. Biol. Eng. Comput. 53, 599–607 (2015)
CrossRef
Google Scholar
Nguyen, T., Ahn, S., Jang, H., Jun, S.C., Kim, J.G.: Utilization of a combined EEG/NIRS system to predict driver drowsiness. Sci. Rep. 7, 43933 (2017)
CrossRef
Google Scholar
Wu, D., Lawhern, V.J., Gordon, S., Lance, B.J., Lin, C.-T.: Driver drowsiness estimation from EEG signals using online weighted adaptation regularization for regression (OwARR). IEEE Trans. Fuzzy Syst. 25, 1522–1535 (2016)
CrossRef
Google Scholar
Wang, X., Xu, C.: Driver drowsiness detection based on non-intrusive metrics considering individual specifics. Accid. Anal. Prev. 95, 350–357 (2016)
CrossRef
Google Scholar
Lawoyin, S., Fei, D.-Y., Bai, O.: Accelerometer-based steering-wheel movement monitoring for drowsy-driving detection. Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. 229, 163–173 (2015)
CrossRef
Google Scholar
Åkerstedt, T., Hallvig, D., Kecklund, G.: Normative data on the diurnal pattern of the Karolinska sleepiness scale ratings and its relation to age, sex, work, stress, sleep quality and sickness absence/illness in a large sample of daytime workers. J. Sleep Res. 26, 559–566 (2017)
CrossRef
Google Scholar
Rumagit, A.M., Akbar, I.A., Igasaki, T.: Gazing time analysis for drowsiness assessment using eye gaze tracker. Telkomnika: J. Telecomun. Comput. Electron. Control 15(2), 919–925 (2017)
CrossRef
Google Scholar
Forsman, P., Pyykkö, I., Toppila, E., Hæggström, E.: Feasibility of force platform based roadside drowsiness screening–a pilot study. Accid. Anal. Prev. 62, 186–190 (2014)
CrossRef
Google Scholar
Jackson, M.L., et al.: The utility of automated measures of ocular metrics for detecting driver drowsiness during extended wakefulness. Accid. Anal. Prev. 87, 127–133 (2016)
CrossRef
Google Scholar
Zhu, X., Zheng, W.-L., Lu, B.-L., Chen, X., Chen, S., Wang, C.: EOG-based drowsiness detection using convolutional neural networks. In: IJCNN, pp. 128–134 (2014)
Google Scholar
Cona, F., Pizza, F., Provini, F., Magosso, E.: An improved algorithm for the automatic detection and characterization of slow eye movements. Med. Eng. Phys. 36, 954–961 (2014)
CrossRef
Google Scholar
Chui, K.T., Tsang, K.F., Chi, H.R., Ling, B.W.K., Wu, C.K.: An accurate ECG-based transportation safety drowsiness detection scheme. IEEE Trans. Industr. Inf. 12, 1438–1452 (2016)
CrossRef
Google Scholar
Jung, S.-J., Shin, H.-S., Chung, W.-Y.: Driver fatigue and drowsiness monitoring system with embedded electrocardiogram sensor on steering wheel. IET Intell. Transport Syst. 8, 43–50 (2014)
CrossRef
Google Scholar
Khushaba, R.N., Kodagoda, S., Lal, S., Dissanayake, G.: Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm. IEEE Trans. Biomed. Eng. 58, 121–131 (2011)
CrossRef
Google Scholar
Patel, M., Lal, S.K., Kavanagh, D., Rossiter, P.: Applying neural network analysis on heart rate variability data to assess driver fatigue. Expert Syst. Appl. 38, 7235–7242 (2011)
CrossRef
Google Scholar
Lin, F.-C., Ko, L.-W., Chuang, C.-H., Su, T.-P., Lin, C.-T.: Generalized EEG-based drowsiness prediction system by using a self-organizing neural fuzzy system. IEEE Trans. Circ. Syst. I Regul. Pap. 59, 2044–2055 (2012)
MathSciNet
CrossRef
Google Scholar
Hu, S., Zheng, G.: Driver drowsiness detection with eyelid related parameters by support vector machine. Expert Syst. Appl. 36, 7651–7658 (2009)
CrossRef
Google Scholar
Chen, L.-L., Zhao, Y., Zhang, J., Zou, J.Z.: Automatic detection of alertness/drowsiness from physiological signals using wavelet-based nonlinear features and machine learning. Expert Syst. Appl. 42(21), 7344–7355 (2015)
CrossRef
Google Scholar
Silveira, T.D., Kozakevicius, A.D.J., Rodrigues, C.R.: Drowsiness detection for single channel EEG by DWT best m-term approximation. Res. Biomed. Eng. 31, 107–115 (2015)
CrossRef
Google Scholar
Tabal, K.M.R., Caluyo, F.S., Ibarra, J.B.G.: Microcontroller-implemented artificial neural network for electrooculography-based wearable drowsiness detection system. In: Sulaiman, H.A., Othman, M.A., Othman, M.F.I., Rahim, Y.A., Pee, N.C. (eds.) Advanced Computer and Communication Engineering Technology. LNEE, vol. 362, pp. 461–472. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-24584-3_39
CrossRef
Google Scholar
Zhenhai, G., DinhDat, L., Hongyu, H., Ziwen, Y., Xinyu, W.: Driver drowsiness detection based on time series analysis of steering wheel angular velocity. In: 2017 9th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), pp. 99–101. IEEE (2017)
Google Scholar
Otmani, S., Pebayle, T., Roge, J., Muzet, A.: Effect of driving duration and partial sleep deprivation on subsequent alertness and performance of car drivers. Physiol. Behav. 84, 715–724 (2005)
CrossRef
Google Scholar
Liu, C.C., Hosking, S.G., Lenné, M.G.: Predicting driver drowsiness using vehicle measures: recent insights and future challenges. J. Saf. Res. 40, 239–245 (2009)
CrossRef
Google Scholar
Ingre, M., Åkerstedt, T., Peters, B., Anund, A., Kecklund, G.: Subjective sleepiness, simulated driving performance and blink duration: examining individual differences. J. Sleep Res. 15, 47–53 (2006)
CrossRef
Google Scholar
Królak, A., Strumiłło, P.: Eye-blink detection system for human–computer interaction. Univ. Access Inf. Soc. 11, 409–419 (2012)
CrossRef
Google Scholar
Bergasa, L.M., Nuevo, J., Sotelo, M.A., Barea, R., Lopez, M.E.: Real-time system for monitoring driver vigilance. IEEE Trans. Intell. Transp. Syst. 7, 63–77 (2006)
CrossRef
Google Scholar
Tang, X., Zhou, P., Wang, P.: Real-time image-based driver fatigue detection and monitoring system for monitoring driver vigilance. In: 2016 35th Chinese on Control Conference (CCC), pp. 4188–4193. IEEE (2016)
Google Scholar
Ahmad, R., Borole, J.: Drowsy driver identification using eye blink detection. IJISET-Int. J. Comput. Sci. Inf. Technol. 6, 270–274 (2015)
Google Scholar
Yan, J.-J., Kuo, H.-H., Lin, Y.-F., Liao, T.-L.: Real-time driver drowsiness detection system based on PERCLOS and grayscale image processing. In: 2016 International Symposium on Computer, Consumer and Control (IS3C), pp. 243–246. IEEE (2016)
Google Scholar
Bhandari, G., Durge, A., Bidwai, A., Aware, U.: Yawning analysis for driver drowsiness detection. Int. J. Eng. Res. Technol. 3, 502–505 (2014)
Google Scholar
Tran, D., Tadesse, E., Sheng, W., Sun, Y., Liu, M., Zhang, S.: A driver assistance framework based on driver drowsiness detection. In: 2016 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 173–178. IEEE (2016)
Google Scholar
Lee, B.-G., Chung, W.-Y.: Driver alertness monitoring using fusion of facial features and bio-signals. IEEE Sens. J. 12, 2416–2422 (2012)
CrossRef
Google Scholar
Nakamura, T., Maejima, A., Morishima, S.: Detection of driver’s drowsy facial expression. In: 2013 2nd IAPR Asian Conference on Pattern Recognition (ACPR), pp. 749–753. IEEE (2013)
Google Scholar