Skip to main content

Hydrodynamic Tools in Ship Design

  • Chapter
  • First Online:
A Holistic Approach to Ship Design
  • 1924 Accesses

Abstract

Ship hydrodynamics is a key discipline in ship design. It determines, to a large extent, two fundamental properties inherent to any new design: the safety of a ship on one hand and the efficiency on the other. While the entire, holistic ship design as anticipated in the HOLISHIP (www.holiship.eu) project aims to balance the two requirements in an optimised way, hydrodynamic considerations will form a set of boundary conditions for the achievable optimum. The present chapter introduces the key elements requiring hydrodynamic analysis and presents relevant tools available to achieve adequate results during different design stages for a new ship. The focus is placed on the tools which are or will be integrated into the HOLISHIP design platforms during the project and how they can be put to use during different stages of ship design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandrov NM, Lewis RM, Gumbert CR, Green LL, Newman PA (2001) Approximation and model management in aerodynamic optimisation with variable-fidelity models. J Aircr 38(6):1093–1101

    Article  Google Scholar 

  • Balay S, Buschelman K, Gropp WD, Kaushik D, Knepley MG, Curfman Mclnnes L, Smith BF, Zhang H (2018) PETSc Web page. 200 I. http://www.mcs.anl.gov/petsc

  • Benamara T, Breitkopf P, Lepot I, Sainvitu C, Villon P (2017) Multi-fidelity POD surrogate-assisted optimisation: concept and aero-design study, structural and multidisciplinary optimisation, pp 1–26

    Google Scholar 

  • Broglia R, Zaghi S, Di Mascio A (2011) Numerical simulation of interference effects for a high-speed catamaran. J Mar Sci Technol 16:254. https://doi.org/10.1007/s00773-011-0132-3

    Article  Google Scholar 

  • Broglia R, Dubbioso G, Durante D, Mascio AD (2013) Simulation of turning circle by CFD: analysis of different propeller models and their effect on manoeuvring prediction. Appl Ocean Res 39:1–10. https://doi.org/10.1016/j.apor.2012.09.001

    Article  Google Scholar 

  • Broglia R, Zaghi S, Muscari R, Salvadore F (2014) Enabling hydrodynamics solver for efficient parallel simulations. In: Proceedings of international conference on high performance computing & simulation (HPCS), pp 803–810, Bologna, Italy. https://doi.org/10.1109/hpcsim.2014.6903770

  • Broglia R, Dubbioso G, Durante D, Di Mascio A (2015a) Turning ability analysis of a fully appended twin screw vessel by CFD. Part I: Single Rudder Configuration, Ocean Eng 105:275–286. https://doi.org/10.1016/j.oceaneng.2015.06.031

    Article  Google Scholar 

  • Broglia R, Dubbioso G, Zaghi S (2015b) Numerical computation of the JBC with and without energy saving device, Tokyo 2015: a workshop on CFD in Ship Hydrodynamics. NMRI, Tokyo, Japan, December 2–4

    Google Scholar 

  • Broglia R, Durante D (2018) Accurate prediction of complex free surface flow around a high speed craft using a single-phase level set method. Computational Mechanics, 62(3):421–437. https://doi.org/10.1007/s00466-017-1505-1

  • B-Series Propeller (2017) https://www.wageningen-b-series-propeller.com/

  • Calcagni D, Salvatore F, Dubbioso G, Muscari R (2017) A generalised unsteady hybrid des/bem methodology applied to propeller-rudder flow simulation. In: Proceedings of VII international conference on computational methods in marine engineering, Nantes, France

    Google Scholar 

  • Campana EF, Peri D, Tahara Y, Stern F (2006) Shape optimisation in ship hydrodynamics using computational fluid dynamics. Comput Methods Appl Mech Eng 196(1–3):634–651

    Article  Google Scholar 

  • Campana EF, Liuzzi G, Lucidi S, Peri D, Piccialli V, Pinto A (2009) New global optimisation methods for ship design problems. Optimisation Eng 10(4):533–555

    Article  Google Scholar 

  • Campana EF, Fasano G, Pinto A (2010) Dynamic analysis for the selection of parameters and initial population, in particle swarm optimisation. J Glob Optimisation 48(3):347–397

    Article  Google Scholar 

  • Campana EF, Diez M, Iemma U, Liuzzi G, Lucidi S, Rinaldi F, Serani A (2015) Derivative-free global ship design optimisation using global/local hybridization of the DIRECT algorithm. Optimisation Eng 17(1):127–156

    Article  Google Scholar 

  • Carrica PM, Castro AM, Stern F (2010) Self-Propulsion computations using speed controller and discretized propeller with dynamic overset grids. J Mar Sci Technol 15:316–330

    Article  Google Scholar 

  • Castro AM, Carrica PM, Stern F (2011) Full scale self-propulsion computations using discretized propeller for the KRISO container ship KCS. Comput Fluids 51:35–47

    Article  Google Scholar 

  • Clerc M (2018) Stagnation analysis in particle swarm optimisation or what happens when nothing happens. Online at http://clerc.maurice.free.fr/pso

  • Datla R, Kim HY, Stebe JR (2009) Evaluation of a CFD program AEGIR™ for bare hull resistance and seakeeping prediction capability, Technical Report NSWCCD-CISD–2009/010, Naval Surface Warfare Center—Carderock Division, July 31

    Google Scholar 

  • Dawson CW (1977) A practical computer method for solving ship-wave problems. In: Proceedings of the 2nd international conference on numerical ship hydrodynamics, pp 30–38, Berkeley

    Google Scholar 

  • de Baar J, Roberts S, Dwight R, Mallol B (2015) Uncertainty quantification for a sailing yacht hull, using multi-fidelity kriging. Comput Fluids 123:185–201

    Article  MathSciNet  Google Scholar 

  • Di Mascio A, Broglia R, Favini B (2001) A second order Godunov type scheme for naval hydrodynamics, pp 253–261. Kluwer Academic/Plenum Publishers

    Google Scholar 

  • Di Mascio A, Muscari R, Broglia R (2006) An overlapping grids approach for moving bodies problems. In: Proceedings of 16th ISOPE, San Francisco, California (USA)

    Google Scholar 

  • Di Mascio A, Broglia R, Muscari R (2007) On the application of the single-phase level set method to naval hydrodynamic flows. Comput Fluids 36:868–886

    Article  Google Scholar 

  • Di Mascio A, Broglia R, Muscari R (2009) Prediction of hydrodynamic coefficients of ship hulls by high-order Godunov-type methods. J Mar Sci Tech 14:19–29

    Article  Google Scholar 

  • Diez M, Campana EF, Stern F (2015) Design-space dimensionality reduction in shape optimisation by Karhunen-Loève expansion. Comput Methods Appl Mech Eng 283:1525–1544

    Article  Google Scholar 

  • Dubbioso G (2011) Manoeuvrability behaviour of twin screw naval vessels. Technical report, Doctoral Dissertation, The University of Genova, Genova, Italy

    Google Scholar 

  • Dubbioso G, Muscari R, Di Mascio A (2013) Analysis of the performances of a marine propeller operating in oblique flow. Comput Fluids 7586-102:ISSN 0045–7930, https://doi.org/10.1016/j.compfluid.2013.01.017

  • Dubbioso G, Durante D, Mascio AD, Broglia R (2016) Turning ability analysis of a fully appended twin screw vessel by CFD. Part II: Single vs. twin rudder configuration. Ocean Eng 117:259–271. https://doi.org/10.1016/j.oceaneng.2016.03.001

    Article  Google Scholar 

  • Dubbioso G, Broglia R, Zaghi S (2017) CFD analysis of maneuvering characteristics of a submarine model. Ocean Eng 129:459–479

    Article  Google Scholar 

  • Gatchell S (2018) Stability and hydrodynamic tools—level 1, HOLISHIP internal report D3.2

    Google Scholar 

  • Guldhammer HE, Harvald SA (1963) Ship resistance, effect of form and principal dimensions, Copenhagen

    Google Scholar 

  • Guo B, Steen S (2010) Added resistance of a VLCC in short waves. In: Proceedings of 29th international conference on ocean, offshore & arctic engineering, OMAE

    Google Scholar 

  • Hafermann D (2007) The new RANSE code FreSCo for ship applications, STG

    Google Scholar 

  • Harries S, Cau C, Marzi J, Kraus A, Papanikolaou A, Zaraphonitis G (2017) Software platform for the Holistic design and optimisation of ships, STG Jahrbuch

    Google Scholar 

  • Hollenbach U. (1998) Estimating resistance and propulsion for single-screw and twin-screw ships, Schiffstechnik

    Google Scholar 

  • Holtrop J, Mennen GGJ (1982) An approximate power prediction method. Int Shipbuilding Prog 29:160–170

    Article  Google Scholar 

  • Hoshino T (1985) Application of quasi-continuous method to unsteady propeller lifting-surface problems. The Society of Naval Architects of Japan

    Google Scholar 

  • Hough G, Ordway D (1965) The generalized actuator disk. Dev Theor Appl Mech 2:317–336

    MathSciNet  Google Scholar 

  • IMO (2009) International maritime organization, IMO MEPC 59/INF.10, Second IMO GHG Study 2009: Update of the 2000 IMO GHG Study

    Google Scholar 

  • ITTC (1957) Report of the committee on skin friction and turbulence stimulation. In: Proceedings of the 8th international towing tank conference

    Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimisation. In: Proceedings of the fourth IEEE conference on neural networks, Piscataway, NJ, pp 1942–1948

    Google Scholar 

  • Jensen G, Mi Z-X, Söding H (1986) Rankine methods for the solution of the steady wave resistance problem. In: Sixteenth symposium on naval hydrodynamics

    Google Scholar 

  • Jin R, Chen W, Simpson TW (2001) Comparative studies of metamodelling techniques under multiple modelling criteria. Struct Multidisciplinary Optimisation 23(1):1–13

    Article  Google Scholar 

  • Jinkine V, Ferdinande V (1974) A method for predicting the added resistance of fast cargo ships in head waves. Int Shipbuilding Prog 21(238)

    Google Scholar 

  • Jones D, Perttunen C, Stuckman B (1993) Lipschitzian optimisation without the Lipschitz constant. J Optimisation Theor Appl 79(1):157–181

    Article  Google Scholar 

  • Kempf G. (1930) Formgebung für Schnelldampfer, Jahrbuch der Schiffbautechnischen Gesellschaft-STG, vol 31

    Google Scholar 

  • Kennedy J, Eberhart R (1995b) Particle swarm optimisation. Proc IEEE Int Conf Neural Netw 4:1942–1948

    Article  Google Scholar 

  • Kring D, Milewski W, Connell B, Petersen B (2008) AEGIR™ time-domain seakeeping program: main executable and I/O user notes, Aug 13

    Google Scholar 

  • Krüger S (2004) Grundlagen der propulsion. Vorlesungsmanuskript TUHH, Hamburg, Germany

    Google Scholar 

  • Lewis EW (ed) (1988) Principles of naval architecture, vol 3, SNAME

    Google Scholar 

  • Lin R-Q, Hughes M, Smith T (2010) Prediction of ship steering capabilities with a fully nonlinear ship motion model. Part 1: Maneuvering in calm water. J Mar Sci Tech 15(2):131—142

    Google Scholar 

  • Liu S, Papanikolaou A, Zaraphonitis G (2011) Prediction of added resistance of ships in waves. J Ocean Eng 38

    Google Scholar 

  • Liu S, Papanikolaou A (2016) Prediction of parametric rolling of ships in single frequency regular and triple frequency group waves. J Ocean Eng. https://doi.org/10.1016/j.oceaneng.2016.03.023 Elsevier

    Article  Google Scholar 

  • Liuzzi G, Lucidi S, Rinaldi F (2016) A derivative-free approach to constrained multiobjective nonsmooth optimisation. SIAM J Optimisation 26(4):2744–2774

    Article  Google Scholar 

  • Lucidi S. and Sciandrone M. (2002) A derivative-free algorithm for bound constrained optimisation, Computational Optimisation and Applications 21 (2), pp. 485 119–142

    Google Scholar 

  • MARNET (2003) MARNET-CFD best practice guidelines https://pronet.atkinsglobal.com/marnet/publications/bpg.pdf

  • Martelli M, Viviani M, Altosole M, Figari M, Vignolo S (2014) Numerical modelling of propulsion, control and ship motions in 6 degrees of freedom. Proc Inst Mech Eng Part M: J Marit Environ 34(4):625–639

    Google Scholar 

  • Martins MA, Lages EN, Silveira ES (2013) Compliant vertical access riser assessment: DOE analysis and dynamic response optimisation. Appl Ocean Res 41:28–40

    Article  Google Scholar 

  • Marzi J, Hafermann D (2008) The ν-SHALLO user guide, Release 1.8.2, HSVA

    Google Scholar 

  • Marzi J, Gatchell S (2012) Towards the ship of least energy consumption, IMDC 2012, Glasgow

    Google Scholar 

  • Marzi J, Mermiris G (2012) TARGETS improves energy efficiency of seaborne transportation, IMDC 2012, Glasgow

    Google Scholar 

  • Marzi J, Voss JP, Gatchell S (2014) CFD analysis of 80-year old model tests for transatlantic liners. In: RINA historic ships, 25–26 Nov 2014, London, UK

    Google Scholar 

  • Marzi J, Papanikolaou A, Corrignan P, Zaraphonitis G, Harries S (2018) HOLISTIC ship design optimisation. In: IMDC 2018, Espoo, Finland

    Google Scholar 

  • Mofidi A, Carrica PM (2014) Simulations of zigzag manoeuvres for a container ship with direct moving rudder and propeller. Comput Fluids 96:191–203

    Article  Google Scholar 

  • Molland AF, Turnock S, Hudson D (2017) Ship resistance and propulsion: practical estimation of ship propulsive power. Cambridge University Press, Cambridge

    Google Scholar 

  • Muscari R, Di Mascio A, Verzicco R (2013) Modeling of vortex dynamics in the wake of a marine propeller. Comput Fluids 73:65–79. https://doi.org/10.1016/j.compfluid.2012.12.003

    Article  MathSciNet  MATH  Google Scholar 

  • Muscari R, Dubbioso G, Ortolani F, Di Mascio A (2017a) Analysis of propeller bearing loads by CFD. Part II: Transient Maneuvers Ocean Eng 146:217–233. https://doi.org/10.1016/j.oceaneng.2017.09.050

    Article  Google Scholar 

  • Muscari R, Dubbioso G, Ortolani F, Di Mascio A (2017b) Analysis of the asymmetric behavior of propeller–rudder system of twin screw ships by CFD. Ocean Eng 143:269–281. https://doi.org/10.1016/j.oceaneng.2017.07.056

    Article  Google Scholar 

  • Nakamura N (1985) Estimation of propeller open-water characteristics based on quasi-continuous method. The Society of Naval Architects of Japan

    Google Scholar 

  • Olivieri A, Pistani F, Avanzini A, Stern F, Penna R (2001) Towing tank, sinkage and trim, boundary layer, wake, and free surface flow around a naval combatant INSEAN 2340 model. Tech Rep, DTIC

    Google Scholar 

  • Papanikolaou Α (1985) On Integral-Equation-Methods for the evaluation of motions and loads of arbitrary bodies in waves. J Ing Archiv 55:17–29

    Article  Google Scholar 

  • Papanikolaou Α, Schellin TH (1992) Α three dimensional panel method for motions and loads of ships with forward speed, Vol. 39. J Schiffstechnik-Ship Technol Res 39(4):147–156

    Google Scholar 

  • Papanikolaou Α, Zaraphonitis G (1987) Οn an improved method for the evaluation of second-order motions and loads on 3D floating bodies in waves. J Schiffstechnik-Ship Technol Res 34:170–211

    Google Scholar 

  • Papanikolaou A, Zaraphonitis G, Maron A, Karayannis T (2000) Nonlinear effects on vertical plane motions of ships with forward speed in waves. In: Proceedings of 4th international Osaka colloquium on seakeeping performance of ships, Osaka, Japan

    Google Scholar 

  • Pellegrini R, Leotardi C, Iemma U, Campana EF, Diez M (2016) A multi-fidelity adaptive sampling method for metamodel based uncertainty quantification of computer simulations. In: Proceedings of the VII European congress on computational methods in applied sciences and engineering, ECCOMAS

    Google Scholar 

  • Pellegrini R, Serani A, Leotardi C, Iemma U, Campana EF, Diez M (2017a) Formulation and parameter selection of multi-objective deterministic particle swarm for simulation-based optimisation. Appl Soft Comput 58:714–731

    Article  Google Scholar 

  • Pellegrini R, Serani A, Liuzzi G, Rinaldi F, Lucidi S, Campana EF, Iemma U, Diez M (2017b) Hybrid global/local derivative-free multi-objective optimisation via deterministic particle swarm with local line search. In: Proceedings of the 3rd International conference on machine learning, optimisation and big data (MOD 2017). Springer LNCS

    Google Scholar 

  • Pellegrini R, Serani A, Broglia R, Diez M, Harries S (2018) Resistance and payload optimization of a sea vehicle by adaptive multi-fidelity metamodeling. In: AIAA/ASCE/AHS/ASC Structures, Structural dynamics, and materials conference, AIAA SciTech Forum, (AIAA 2018-1904)

    Google Scholar 

  • Rawson KJ, Tupper EC (1993) Basic ship theory, 4th edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Rhie CM, Chow WL (1983) Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J 21(11):1525–1535

    Article  Google Scholar 

  • Ribner H (1945) Propellers in yaw, NACA-TR-820

    Google Scholar 

  • Salvatore F, Greco L, Calcagni D (2011) Computational analysis of marine propeller performance and cavitation by using an inviscid-flow BEM model. In: 2nd international symposium on marine propulsors, SMP’11, Hamburg, Germany, 15–17 June

    Google Scholar 

  • Salvatore F, Calcagni D, Muscari R, Broglia R (2015) A generalised fully unsteady hybrid RANS/BEM model for marine propeller flow simulations. In: Broglia R, Salvatore F, Muscari R (eds) Proceedings of VI international conference on computational methods in marine engineering, Rome, Italy, 15–17 June, pp 613–626

    Google Scholar 

  • Schneekluth H, Bertram V (1998) Ship design for efficiency and economy, Butterworth-Heinemann, ISBN: 9780750641333

    Google Scholar 

  • Serani A, Diez M, Leotardi C, Peri D, Fasano G, Iemma U, Campana EF (2014) On the use of synchronous and asynchronous single-objective deterministic particle swarm optimisation in ship design problems. In: Proceedings of the 1st international conference in engineering and applied sciences optimisation, Kos, Greece, 4–6 June

    Google Scholar 

  • Serani A, Diez M, Campana EF, Fasano G, Peri D, Iemma U (2015) Globally convergent hybridization of particle swarm optimisation using line search based derivative-free techniques. In: Yang X-S (ed) Recent advances in swarm intelligence and evolutionary computation, vol 585 of Studies in computational intelligence. Springer International Publishing, pp 25–47

    Google Scholar 

  • Serani A, Fasano G, Liuzzi G, Lucidi S, Iemma U, Campana EF, Stern F, Diez M (2016) Ship hydrodynamic optimisation by local hybridization of deterministic derivative-free global algorithms. Appl Ocean Res 59:115–128

    Article  Google Scholar 

  • Shah H, Hosder S, Koziel S, Tesfahunegn YA, Leifsson L (2015) Multi-fidelity robust aerodynamic design optimisation under mixed uncertainty. Aerosp Sci Technol 45:17–29

    Article  Google Scholar 

  • Simonsen CD, Stern F, Quadvlieg F (2014) Proceedings SIMMAN 2014 workshop, Workshop on V&V of ship manoeuvering simulation methods, Copenhagen, Denmark

    Google Scholar 

  • Söding H (1993) A method for accurate force calculation in potential flow. Ship Technol Res 40

    Google Scholar 

  • Stern F, Agdrup K, Kim SY, Cura-Hochbaum A, Rhee KP, Quadvlieg F, Perdon P, Hino T, Broglia R, Gorski J (2011) Experience from SIMMAN 2008-the first workshop on verification and validation of ship maneuvering simulation methods. J Ship Res 55(2): 135–147(13)

    Google Scholar 

  • Takahashi T (1988) A practical prediction method of added resistance of a ship in waves and the direction of its application to hull form design. Trans West Jpn Soc Naval Architects 75:75–95

    Google Scholar 

  • Todd FH, Forest FX (1951) A proposed new basis for the design of single screw merchant ship forms and standard series lines SNAME

    Google Scholar 

  • Todd FH, Pien PC (1956) Series 60—the effect upon resistance and power of variation in LCB position. SNAME

    Google Scholar 

  • Xing-Kaeding Y (2015) Design of customised ESDs, GST conference, Copenhagen

    Google Scholar 

  • Yasukawa H, Yoshimura Y (2014) Roll-coupling effect on ship manoeuvrability. Ship Technol Res 61(1):16–32

    Article  Google Scholar 

  • Zaghi S, Broglia R, Di Mascio A (2011) Analysis of the interference effects for high-speed catamarans by model tests and numerical simulations. Ocean Eng 38(17–18):2110–2122

    Article  Google Scholar 

  • Zaghi S, Di Mascio A, Broglia R, Muscari R (2015) Application of dynamic overlapping grids to the simulation of the flow around a fully-appended submarine. Math Comput Simul 116:75–88

    Google Scholar 

  • Zheng J, Shao X, Gao L, Jiang P, Li Z (2013) A hybrid variable-fidelity global approximation modelling method combining tuned radial basis function base and kriging correction. J Eng Des 24(8):604–622

    Article  Google Scholar 

  • Zhou Q, Shao X, Jiang P, Zhou H, Shu L (2015) An adaptive global variable fidelity metamodeling strategy using a support vector regression based scaling function. Simul Modell Pract Theor 59:18–35

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Marzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marzi, J., Broglia, R. (2019). Hydrodynamic Tools in Ship Design. In: Papanikolaou, A. (eds) A Holistic Approach to Ship Design. Springer, Cham. https://doi.org/10.1007/978-3-030-02810-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02810-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02809-1

  • Online ISBN: 978-3-030-02810-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics