Microbial Symbionts of Antarctic Marine Benthic Invertebrates

  • Angelina Lo GiudiceEmail author
  • Maurizio Azzaro
  • Stefano Schiaparelli
Part of the Springer Polar Sciences book series (SPPS)


The microbial colonization of living surfaces may be affected by several environmental and biological factors and may play an important role in the development and evolution of the holobiont. Antarctica, as an extreme and isolated environment, offers a unique opportunity to study the peculiar and often strict interactions that are established between a benthic host and its symbionts. Despite this, to date the association between microbes and Antarctic benthic invertebrates has been only seldom investigated, resulting in fragmented and poor information. This chapter will be devoted to showcase our current knowledge on prokaryotic (Bacteria and Archaea) and eukaryotic (yeasts and diatoms) microbial symbionts of Antarctic benthic invertebrate hosts, including mainly Porifera and, at to a lesser extent, Cnidaria, Echinodermata and Annelida.


Microbial symbionts Benthic invertebrates Microbial diversity Host-specificity Microbiome 



This chapter was supported by grants from the Italian Programma Nazionale di Ricerche in Antartide, Project PNRA16_00020, “Antarctic Porifera: Hot-spots for prokaryotic diversity and biotechnological potentialities” (PEA Code 2016/AZ1.08). All images but Fig. 13.1 have been made by Stefano Schiaparelli during different dives in Tethys Bay (Terra Nova Bay) (© PNRA). The PNRA project GEOSMART (2013/AZ2.06, PI Paolo Montagna) is acknowledged for the ROV image of Fig. 13.1, taken by Simonepietro Canese in Adelie Cove (Terra Nova Bay).


  1. Abele, D., Vazquez, S., Buma, A. G. J., Hernandez, E., Quiroga, C., Held, C., Frickenhaus, S., Harms, L., Lopez, J. L., Helmke, E., & Mac Cormack, W. P. (2017). Pelagic and benthic communities of the Antarctic ecosystem of Potter Cove: Genomics and ecological implications. Marine Genomics, 33, 1–11.Google Scholar
  2. Ahn, I. Y., Moon, H. W., Jeon, M., & Kang, S.-H. (2016). First record of massive blooming of benthic diatoms and their association with megabenthic filter feeders on the shallow seafloor of an Antarctic fjord: Does glacier melting fuel the bloom? Ocean Science Journal, 51, 273–279.CrossRefGoogle Scholar
  3. Amsler, C. D., Moeller, C. B., McClintock, J. B., Iken, K. B., & Baker, B. J. (2000). Chemical defenses against diatom fouling in Antarctic marine sponges. Biofouling, 16, 29–45.CrossRefGoogle Scholar
  4. Barnes, D. K. A., & Conlan, K. E. (2007). Disturbance, colonization and development of Antarctic benthic communities. Philosophical Transactions of the Royal Society B, 362, 11–38.CrossRefGoogle Scholar
  5. Bavestrello, G., Cerrano, C., Cattaneo-Vietti, R., Gaino, E., Penna, A., & Sarà, M. (2000). Parasitic diatoms inside Antarctic sponges. The Biological Bulletin, 198, 29–33.CrossRefGoogle Scholar
  6. Buzzini, P., Branda, E., Goretti, M., & Turchetti, B. (2012). Psychrophilic yeasts from worldwide glacial habitats: Diversity, adaptation strategies and biotechnological potential. FEMS Microbiology Ecology, 82, 217–241.CrossRefGoogle Scholar
  7. Calizza, E., Careddu, G., Sporta Caputi, S., Rossi, L., & Costantini, M. L. (2018). Time- and depth-wise trophic niche shifts in Antarctic benthos. PLoS One, 13(3), e0194796.CrossRefGoogle Scholar
  8. Casas, C., Ramil, F., & van Ofwegen, L. P. (1997). Octocorallia (Cnidaria: Anthozoa) from the Scotia Arc, South Atlantic Ocean. I. The genus Alcyonium Linnaeus, 1758. Zoologische Mededelingen (Leiden), 71, 299–311.Google Scholar
  9. Cerrano, C., Bavestrello, G., Calcinai, B., Cattaneo-Vietti, R., & Sarà, A. (2000a). Asteroids eating sponges from Tethys Bay, East Antarctica. Antarctic Science, 12, 425–426.CrossRefGoogle Scholar
  10. Cerrano, C., Arillo, A., Bavestrello, G., Calcinai, A., Cattaneo-Vietti, R., Cancinai, B., Cattaneo-Vietti, R., Penna, A., Sarà, M., & Totti, C. (2000b). Diatom invasion in the Antarctic hexactinellid sponge Scolymastra joubini. Polar Biology, 23, 441–444.CrossRefGoogle Scholar
  11. Cerrano, C., Calcinai, B., Cucchiari, E., Di Camillo, C., Nigro, M., Regoli, F., Sarà, A., Schiaparelli, S., Totti, C., & Bavestrello, G. (2004a). Are diatoms a food source for Antarctic sponges? Chemistry and Ecology, 20, 57–64.CrossRefGoogle Scholar
  12. Cerrano, C., Calcinai, B., Cucchiari, E., Di Camillo, C., Totti, C., & Bavestrello, G. (2004b). The diversity of relationships between Antarctic sponges and diatoms: The case of Mycale acerata Kirkpatrick, 1907 (Porifera, Demospongiae). Polar Biology, 27, 231–237.CrossRefGoogle Scholar
  13. Clark, G. F., Raymond, B., Riddle, M. J., Stark, J. S., & Johnston, E. L. (2015). Vulnerability of Antarctic shallow invertebrate-dominated ecosystems. Austral Ecology, 40, 482–491.CrossRefGoogle Scholar
  14. Clark, G. F., Stark, J. S., Palmer, A. S., Riddle, M. J., & Johnston, E. L. (2017). The roles of sea-ice, light and sedimentation in structuring shallow Antarctic benthic communities. PLoS One, 12, e0168391.CrossRefGoogle Scholar
  15. Clarke, A., & Crame, J. A. (1989). The origin of the Southern Ocean marine fauna. In J. A. Crame (Ed.), Origins and evolution of the Antarctic biota (Vol. 47, pp. 253–268). London: Special Publications of Geological Society.Google Scholar
  16. Clarke, A., & Johnston, N. M. (2003). Antarctic marine benthic diversity. Oceanography and Marine Biology Annual Review, 41, 47–114.Google Scholar
  17. Clarke, A., Aronson, R., Crame, J., Gili, J., & Blake, D. (2004). Evolution and diversity of the benthic fauna of the Southern Ocean continental shelf. Antarctic Science, 16, 559–568.CrossRefGoogle Scholar
  18. Dayton, P. K., Robilliard, G. A., & Devries, A. L. (1969). Anchor ice formation in McMurdo Sound, Antarctica, and its biological effects. Science, 163, 273–274.CrossRefGoogle Scholar
  19. Díaz, A., Gérard, K., González-Wevar, C., Maturana, C., Féral, J.-P., David, B., et al. (2018). Genetic structure and demographic inference of the regular sea urchin Sterechinus neumayeri (Meissner, 1900) in the Southern Ocean: The role of the last glaciation. PLoS One, 13, e0197611.CrossRefGoogle Scholar
  20. Duarte, A. W., Dayo-Owoyemi, I., Nobre, F. S., Pagnocca, F. C., Chaud, L. C., Pessoa, A., Felipe, M. G., & Sette, L. D. (2013). Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples. Extremophiles, 17, 1023–1035.CrossRefGoogle Scholar
  21. Gaino, E., Bavestrello, G., Cattaneo-Vietti, R., & SaraÁ, M. (1994). Scanning electron microscope evidence for diatom uptake by two Antarctic sponges. Polar Biology, 14, 55–58.CrossRefGoogle Scholar
  22. Gili, J. M., Alvà, V., Pagès, F., Klöser, H., & Arntz, W. E. (1996). Benthic diatoms as the major food source in the sub-Antarctic marine hydroid Silicularia rosea. Polar Biology, 16, 507–512.CrossRefGoogle Scholar
  23. Gili, J.-M., Arntz, W. E., Palanques, A., et al. (2006). A unique assemblage of epibenthic sessile suspension feeders with archaic features in the high-Antarctic. Deep Sea Research Part II, 53, 1029–1052.CrossRefGoogle Scholar
  24. González-Aravena, M., Urtubia, R., Del Campo, K., Lavín, P., Wong, C. M. V. L., Cárdenas, C. A., & González-Rocha, G. (2016). Antibiotic and metal resistance of cultivable bacteria in the Antarctic sea urchin. Antarctic Science, 28, 261–268.CrossRefGoogle Scholar
  25. Hamilton, P. B., Poulin, M., & Yang, J.-R. (1997). A new diatom genus Porannulus (Bacillariophyta), associated with marine sponges around King George Island, South Shetland Islands, Antarctica. Diatomologica Research, 12, 229–242.CrossRefGoogle Scholar
  26. Hentschel, U., Hopke, J., Horn, M., Friedrich, A. B., Wagner, M., Hacker, J., & Moore, B. S. (2002). Molecular evidence for a uniform microbial community in sponges from different oceans. Applied and Environmental Microbiology, 68, 4431–4440.CrossRefGoogle Scholar
  27. Herrera, L. M., García-Laviña, C. X., Marizcurrena, J. J., Volonterio, O., Ponce de León, R., & Castro-Sowinski, S. (2017). Hydrolytic enzyme-producing microbes in the Antarctic oligochaete Grania sp. (Annelida). Polar Biology, 40, 947–953.CrossRefGoogle Scholar
  28. Kellogg, D. E., Kellogg, T. B., Dearborn, J. H., Edwards, K. C., & Fratt, D. B. (1982). Diatoms from brittle star stomach contents: Implications for sediment reworking. Antarctic Journal of the United States, 17, 167–169.Google Scholar
  29. Laich, F., Chávez, R., & Vaca, I. (2014). Leucosporidium escuderoi f.a., sp. nov., a basidiomycetous yeast associated with an Antarctic marine sponge. Antonie Van Leeuwenhoek, 105, 593–601.CrossRefGoogle Scholar
  30. Mangano, S., Michaud, L., Caruso, C., Brilli, M., Bruni, V., Fani, R., & Lo Giudice, A. (2009). Antagonistic interactions among psychrotrophic cultivable bacteria isolated from Antarctic sponges: A preliminary analysis. Research in Microbiology, 160, 27–37.CrossRefGoogle Scholar
  31. Mangano, S., Michaud, L., Caruso, C., & Lo Giudice, A. (2014). Metal and antibiotic-resistance in psychrotrophic bacteria associated with the Antarctic sponge Hemigellius pilosus (Kirkpatrick, 1907). Polar Biology, 37, 227–235.CrossRefGoogle Scholar
  32. Mangano, S., Caruso, C., Michaud, L., & Lo Giudice, A. (2018). First evidence of quorum sensing activity in bacteria associated with Antarctic sponges. Polar Biology, 41, 1435–1445.CrossRefGoogle Scholar
  33. Margesin, R., & Miteva, V. (2011). Diversity and ecology of psychrophilic microorganisms. Research in Microbiology, 162, 346–361.CrossRefGoogle Scholar
  34. McClintock, J. B., Amsler, C. D., Baker, B. J., & van Soest, R. W. (2005). Ecology of Antarctic marine sponges: An overview. Integrative and Comparative Biology, 45, 359–368.CrossRefGoogle Scholar
  35. Núñez-Pons, L., Carbone, M., Vázquez, J., Gavagnin, M., & Avila, C. (2013). Lipophilic defenses from Alcyonium soft corals of Antarctica. Journal of Chemical Ecology, 39, 675–685.CrossRefGoogle Scholar
  36. Papaleo, M. C., Fondi, M., Maida, I., Perrin, E., Lo Giudice, A., Michaud, L., Mangano, S., Bartolucci, G., Romoli, R., & Fani, R. (2012). Sponge-associated microbial Antarctic communities exhibiting antimicrobial activity against Burkholderia cepacia complex bacteria. Biotechnology Advances, 30, 272–293.CrossRefGoogle Scholar
  37. Rodríguez-Marconi, S., De la Iglesia, R., Díez, B., Fonseca, C. A., Hajdu, E., & Trefault, N. (2015). Characterization of bacterial, archaeal and eukaryote symbionts from Antarctic sponges reveals a high diversity at a three-domain level and a particular signature for this ecosystem. PLoS One, 10, e0138837.CrossRefGoogle Scholar
  38. Rosenber, E., & Zilber-Rosenberg, I. (2016). Microbes drive evolution of animals and plants: The hologenome concept. mBio, 7, e01395–e01315. Scholar
  39. Rosenber, E., & Zilber-Rosenberg, I. (2018). The hologenome concept of evolution after 10 years. Microbiome, 6, 78. Scholar
  40. Schiaparelli, S. (2014). Biotic interactions. In C. De Broyer, P. Koubbi, H. Griffiths, B. Raymond, U. d’Acoz C.d’, A. Van de Putte, B. Danis, B. David, S. Grant, J. Gutt, C. Held, G. Hosie, F. Huettmann, A. Post, & Y. Ropert-Coudert (Eds.)., Biogeographic Atlas of the Southern Ocean Biogeographic atlas of the Southern Ocean (pp. 245–252). Cambridge, UK: The Scientific Committee on Antarctic Research, Scott Polar Research Institute. ISBN:978-0-948277-28-3., Chapter 5.31.
  41. Schiaparelli, S., Albertelli, G., & Cattaneo-Vietti, R. (2003). The epibiotic assembly on the sponge Haliclona dancoi (Topsent, 1901) at Terra Nova Bay (Antarctica, Ross Sea). Polar Biology, 26, 342–347.Google Scholar
  42. Soldatou, S., & Baker, B. J. (2017). Cold-water marine natural products, 2006 to 2016. Natural Product Reports, 34, 585–626.CrossRefGoogle Scholar
  43. Tatián, M., Sahade, R., & Esnal, G. B. (2004). Diet components in the food of Antarctic ascidians living at low levels of primary production. Antarctic Science, 16, 123–128.CrossRefGoogle Scholar
  44. Totti, C., Calcinai, B., Cerrano, C., Camillo, C., Romagnoli, T., & Bavestrello, G. (2005). Diatom assemblages associated with Sphaerotylus antarcticus (Porifera: Demospongiae). Journal of the Marine Biological Association of the UK, 85, 795–800.CrossRefGoogle Scholar
  45. Vaca, I., Faúndez, C., Maza, F., Paillavil, B., Hernández, V., Acosta, F., Levicán, G., Martínez, C., & Chávez, R. (2013). Cultivable psychrotolerant yeasts associated with Antarctic marine sponges. World Journal of Microbiology and Biotechnology, 29, 183–189.CrossRefGoogle Scholar
  46. Webster, N., & Bourne, D. (2007). Bacterial community structure associated with the Antarctic soft coral, Alcyonium antarcticum. FEMS Microbiology Ecology, 59, 81–94.CrossRefGoogle Scholar
  47. Webster, N. S., Negri, A. P., Munro, M. M. H. G., & Battershill, C. N. (2004). Diverse microbial communities inhabit Antarctic sponges. Environmental Microbiology, 6, 288–300.CrossRefGoogle Scholar
  48. Xin, Y., Kanagasabhapathy, M., Janussen, D., Xue, S., & Zhang, W. (2011). Phylogenetic diversity of Gram-positive bacteria cultured from Antarctic deep-sea sponges. Polar Biology, 34, 1501–1512.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Angelina Lo Giudice
    • 1
    Email author
  • Maurizio Azzaro
    • 1
  • Stefano Schiaparelli
    • 2
    • 3
  1. 1.Institute for the Biological Resources and Marine BiotechnologiesNational Research Council, U.O.S. MessinaMessinaItaly
  2. 2.Department of Earth, Environment and Life SciencesUniversity of GenoaGenoaItaly
  3. 3.Italian National Antarctic Museum (MNA, Section of Genoa)University of GenoaGenoaItaly

Personalised recommendations