Advertisement

Targeting the PI3K Signalling as a Therapeutic Strategy in Colorectal Cancer

  • Maria Sofia Fernandes
  • João Miguel Sanches
  • Raquel SerucaEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1110)

Abstract

Colorectal cancer (CRC) remains one of the leading causes of cancer mortality worldwide. Regarded as a heterogeneous disease, a number of biomarkers have been proposed to help in the stratification of CRC patients and to enable the selection of the best therapy for each patient towards personalized therapy. However, although the molecular mechanisms underlying the development of CRC have been elucidated, the therapeutic strategies available for these patients are still quite limited. Thus, over the last few years, a multitude of novel targets and therapeutic strategies have emerged focusing on deregulated molecules and pathways that are implicated in cell growth and survival. Particularly relevant in CRC are the activating mutations in the oncogene PIK3CA that frequently occur in concomitancy with KRAS and BRAF mutations and that lead to deregulation of the major signalling pathways PI3K and MAPK, downstream of EGFR. This review focus on the importance of the PI3K signalling in CRC development, on the current knowledge of PI3K inhibition as a therapeutic approach in CRC and on the implications PI3K signalling molecules may have as potential biomarkers and as new targets for directed therapies in CRC patients.

Keywords

Colorectal cancer PI3K signalling pathway PI3K p110α Targeted therapies KRAS 

References

  1. Allegra CJ, Jessup JM, Somerfield MR, Hamilton SR, Hammond EH, Hayes DF, McAllister PK, Morton RF, Schilsky RL (2009) American Society of Clinical Oncology provisional clinical opinion: testing for KRAS gene mutations in patients with metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy. J Clin Oncol 27(12):2091–2096.  https://doi.org/10.1200/JCO.2009.21.9170 CrossRefPubMedGoogle Scholar
  2. Allegra CJ, Rumble RB, Hamilton SR, Mangu PB, Roach N, Hantel A, Schilsky RL (2016) Extended RAS gene mutation testing in metastatic colorectal carcinoma to predict response to anti-epidermal growth factor receptor monoclonal antibody therapy: American Society of Clinical Oncology provisional clinical opinion update 2015. J Clin Oncol 34(2):179–185.  https://doi.org/10.1200/JCO.2015.63.9674 CrossRefPubMedGoogle Scholar
  3. Baselga J, Campone M, Piccart M, Burris HA 3rd, Rugo HS, Sahmoud T, Noguchi S, Gnant M, Pritchard KI, Lebrun F, Beck JT, Ito Y, Yardley D, Deleu I, Perez A, Bachelot T, Vittori L, Xu Z, Mukhopadhyay P, Lebwohl D, Hortobagyi GN (2012) Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 366(6):520–529.  https://doi.org/10.1056/NEJMoa1109653 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bendell JC, Nemunaitis J, Vukelja SJ, Hagenstad C, Campos LT, Hermann RC, Sportelli P, Gardner L, Richards DA (2011) Randomized placebo-controlled phase II trial of perifosine plus capecitabine as second- or third-line therapy in patients with metastatic colorectal cancer. J Clin Oncol 29(33):4394–4400.  https://doi.org/10.1200/JCO.2011.36.1980 CrossRefPubMedGoogle Scholar
  5. Bendell JC, Rodon J, Burris HA, de Jonge M, Verweij J, Birle D, Demanse D, De Buck SS, Ru QC, Peters M, Goldbrunner M, Baselga J (2012) Phase I, dose-escalation study of BKM120, an oral pan-Class I PI3K inhibitor, in patients with advanced solid tumors. J Clin Oncol 30(3):282–290.  https://doi.org/10.1200/JCO.2011.36.1360 CrossRefPubMedGoogle Scholar
  6. Blagden S, Omlin A, Josephs D, Stavraka C, Zivi A, Pinato DJ, Anthoney A, Decordova S, Swales K, Riisnaes R, Pope L, Noguchi K, Shiokawa R, Inatani M, Prince J, Jones K, Twelves C, Spicer J, Banerji U (2014) First-in-human study of CH5132799, an oral class I PI3K inhibitor, studying toxicity, pharmacokinetics, and pharmacodynamics, in patients with metastatic cancer. Clin Cancer Res 20(23):5908–5917.  https://doi.org/10.1158/1078-0432.CCR-14-1315 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small G proteins. Cell 129(5):865–877.  https://doi.org/10.1016/j.cell.2007.05.018 CrossRefPubMedGoogle Scholar
  8. Bowles DW, Senzer N, Hausman D, Peterson S, Vo A, Walker L, Cohen RB, Jimeno A (2014) A multicenter phase 1 study of PX-866 and cetuximab in patients with metastatic colorectal carcinoma or recurrent/metastatic squamous cell carcinoma of the head and neck. Investig New Drugs 32(6):1197–1203.  https://doi.org/10.1007/s10637-014-0124-3 CrossRefGoogle Scholar
  9. Bowles DW, Kochenderfer M, Cohn A, Sideris L, Nguyen N, Cline-Burkhardt V, Schnadig I, Choi M, Nabell L, Chaudhry A, Ruxer R, Ucar A, Hausman D, Walker L, Spira A, Jimeno A (2016) A randomized, phase II trial of Cetuximab with or without PX-866, an irreversible oral phosphatidylinositol 3-kinase inhibitor, in patients with metastatic colorectal carcinoma. Clin Colorectal Cancer 15(4):337–344 e332.  https://doi.org/10.1016/j.clcc.2016.03.004 CrossRefPubMedGoogle Scholar
  10. Britten CD (2013) PI3K and MEK inhibitor combinations: examining the evidence in selected tumor types. Cancer Chemother Pharmacol 71(6):1395–1409.  https://doi.org/10.1007/s00280-013-2121-1 CrossRefPubMedGoogle Scholar
  11. Brown JS, Banerji U (2017) Maximising the potential of AKT inhibitors as anti-cancer treatments. Pharmacol Ther 172:101–115.  https://doi.org/10.1016/j.pharmthera.2016.12.001 CrossRefPubMedGoogle Scholar
  12. Castellano E, Downward J (2011) RAS interaction with PI3K: more than just another effector pathway. Genes Cancer 2(3):261–274.  https://doi.org/10.1177/1947601911408079 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chandarlapaty S, Sawai A, Scaltriti M, Rodrik-Outmezguine V, Grbovic-Huezo O, Serra V, Majumder PK, Baselga J, Rosen N (2011) AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell 19(1):58–71.  https://doi.org/10.1016/j.ccr.2010.10.031 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ciardiello F, Tortora G (2008) EGFR antagonists in cancer treatment. N Engl J Med 358(11):1160–1174.  https://doi.org/10.1056/NEJMra0707704 CrossRefPubMedGoogle Scholar
  15. Cully M, You H, Levine AJ, Mak TW (2006) Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 6(3):184–192.  https://doi.org/10.1038/nrc1819 CrossRefPubMedGoogle Scholar
  16. Cunningham D, Atkin W, Lenz HJ, Lynch HT, Minsky B, Nordlinger B, Starling N (2010) Colorectal cancer. Lancet 375(9719):1030–1047.  https://doi.org/10.1016/S0140-6736(10)60353-4 CrossRefPubMedGoogle Scholar
  17. De Roock W, Jonker DJ, Di Nicolantonio F, Sartore-Bianchi A, Tu D, Siena S, Lamba S, Arena S, Frattini M, Piessevaux H, Van Cutsem E, O’Callaghan CJ, Khambata-Ford S, Zalcberg JR, Simes J, Karapetis CS, Bardelli A, Tejpar S (2010) Association of KRAS p.G13D mutation with outcome in patients with chemotherapy-refractory metastatic colorectal cancer treated with cetuximab. JAMA 304(16):1812–1820.  https://doi.org/10.1001/jama.2010.1535 CrossRefPubMedGoogle Scholar
  18. De Roock W, De Vriendt V, Normanno N, Ciardiello F, Tejpar S (2011) KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer. Lancet Oncol 12(6):594–603.  https://doi.org/10.1016/S1470-2045(10)70209-6 CrossRefPubMedGoogle Scholar
  19. Do K, Speranza G, Bishop R, Khin S, Rubinstein L, Kinders RJ, Datiles M, Eugeni M, Lam MH, Doyle LA, Doroshow JH, Kummar S (2015) Biomarker-driven phase 2 study of MK-2206 and selumetinib (AZD6244, ARRY-142886) in patients with colorectal cancer. Investig New Drugs 33(3):720–728.  https://doi.org/10.1007/s10637-015-0212-z CrossRefGoogle Scholar
  20. Domingo E, Espin E, Armengol M, Oliveira C, Pinto M, Duval A, Brennetot C, Seruca R, Hamelin R, Yamamoto H, Schwartz S Jr (2004) Activated BRAF targets proximal colon tumors with mismatch repair deficiency and MLH1 inactivation. Genes Chromosomes Cancer 39(2):138–142.  https://doi.org/10.1002/gcc.10310 CrossRefPubMedGoogle Scholar
  21. Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7(8):606–619.  https://doi.org/10.1038/nrg1879 CrossRefPubMedGoogle Scholar
  22. Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R, Maira M, McNamara K, Perera SA, Song Y, Chirieac LR, Kaur R, Lightbown A, Simendinger J, Li T, Padera RF, Garcia-Echeverria C, Weissleder R, Mahmood U, Cantley LC, Wong KK (2008) Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 14(12):1351–1356.  https://doi.org/10.1038/nm.1890 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61(5):759–767CrossRefGoogle Scholar
  24. Fernandes MS, Carneiro F, Oliveira C, Seruca R (2013) Colorectal cancer and RASSF family--a special emphasis on RASSF1A. Int J Cancer 132(2):251–258.  https://doi.org/10.1002/ijc.27696 CrossRefPubMedGoogle Scholar
  25. Fernandes MS, Melo S, Velho S, Carneiro P, Carneiro F, Seruca R (2016) Specific inhibition of p110alpha subunit of PI3K: putative therapeutic strategy for KRAS mutant colorectal cancers. Oncotarget 7(42):68546–68558.  https://doi.org/10.18632/oncotarget.11843 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Fritsch C, Huang A, Chatenay-Rivauday C, Schnell C, Reddy A, Liu M, Kauffmann A, Guthy D, Erdmann D, De Pover A, Furet P, Gao H, Ferretti S, Wang Y, Trappe J, Brachmann SM, Maira SM, Wilson C, Boehm M, Garcia-Echeverria C, Chene P, Wiesmann M, Cozens R, Lehar J, Schlegel R, Caravatti G, Hofmann F, Sellers WR (2014) Characterization of the novel and specific PI3Kalpha inhibitor NVP-BYL719 and development of the patient stratification strategy for clinical trials. Mol Cancer Ther 13(5):1117–1129.  https://doi.org/10.1158/1535-7163.MCT-13-0865 CrossRefPubMedGoogle Scholar
  27. Gills JJ, Dennis PA (2009) Perifosine: update on a novel Akt inhibitor. Curr Oncol Rep 11(2):102–110CrossRefGoogle Scholar
  28. Gopal AK, Kahl BS, de Vos S, Wagner-Johnston ND, Schuster SJ, Jurczak WJ, Flinn IW, Flowers CR, Martin P, Viardot A, Blum KA, Goy AH, Davies AJ, Zinzani PL, Dreyling M, Johnson D, Miller LL, Holes L, Li D, Dansey RD, Godfrey WR, Salles GA (2014) PI3Kdelta inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med 370(11):1008–1018.  https://doi.org/10.1056/NEJMoa1314583 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gryfe R, Kim H, Hsieh ET, Aronson MD, Holowaty EJ, Bull SB, Redston M, Gallinger S (2000) Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N Engl J Med 342(2):69–77.  https://doi.org/10.1056/NEJM200001133420201 CrossRefPubMedGoogle Scholar
  30. Guertin DA, Sabatini DM (2009) The pharmacology of mTOR inhibition. Sci Signal 2(67):pe24.  https://doi.org/10.1126/scisignal.267pe24 CrossRefPubMedGoogle Scholar
  31. Gupta S, Ramjaun AR, Haiko P, Wang Y, Warne PH, Nicke B, Nye E, Stamp G, Alitalo K, Downward J (2007) Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell 129(5):957–968.  https://doi.org/10.1016/j.cell.2007.03.051 CrossRefPubMedGoogle Scholar
  32. Haagensen EJ, Kyle S, Beale GS, Maxwell RJ, Newell DR (2012) The synergistic interaction of MEK and PI3K inhibitors is modulated by mTOR inhibition. Br J Cancer 106(8):1386–1394.  https://doi.org/10.1038/bjc.2012.70 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H, Barnett J, Leslie NR, Cheng S, Shepherd PR, Gout I, Downes CP, Lamb RF (2004) The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol 166(2):213–223.  https://doi.org/10.1083/jcb.200403069 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Heinemann V, Rivera F, O’Neil BH, Stintzing S, Koukakis R, Terwey JH, Douillard JY (2016) A study-level meta-analysis of efficacy data from head-to-head first-line trials of epidermal growth factor receptor inhibitors versus bevacizumab in patients with RAS wild-type metastatic colorectal cancer. Eur J Cancer 67:11–20.  https://doi.org/10.1016/j.ejca.2016.07.019 CrossRefPubMedGoogle Scholar
  35. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4(12):988–1004.  https://doi.org/10.1038/nrd1902 CrossRefPubMedGoogle Scholar
  36. Hill R, Madureira PA, Ferreira B, Baptista I, Machado S, Colaco L, Dos Santos M, Liu N, Dopazo A, Ugurel S, Adrienn A, Kiss-Toth E, Isbilen M, Gure AO, Link W (2017) TRIB2 confers resistance to anti-cancer therapy by activating the serine/threonine protein kinase AKT. Nat Commun 8:14687.  https://doi.org/10.1038/ncomms14687 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hong DS, Bowles DW, Falchook GS, Messersmith WA, George GC, O’Bryant CL, Vo AC, Klucher K, Herbst RS, Eckhardt SG, Peterson S, Hausman DF, Kurzrock R, Jimeno A (2012) A multicenter phase I trial of PX-866, an oral irreversible phosphatidylinositol 3-kinase inhibitor, in patients with advanced solid tumors. Clin Cancer Res 18(15):4173–4182.  https://doi.org/10.1158/1078-0432.CCR-12-0714 CrossRefPubMedGoogle Scholar
  38. Hong S, Kim S, Kim HY, Kang M, Jang HH, Lee WS (2016) Targeting the PI3K signaling pathway in KRAS mutant colon cancer. Cancer Med 5(2):248–255.  https://doi.org/10.1002/cam4.591 CrossRefPubMedGoogle Scholar
  39. Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, Staroslawska E, Sosman J, McDermott D, Bodrogi I, Kovacevic Z, Lesovoy V, Schmidt-Wolf IG, Barbarash O, Gokmen E, O’Toole T, Lustgarten S, Moore L, Motzer RJ, Global AT (2007) Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 356(22):2271–2281.  https://doi.org/10.1056/NEJMoa066838 CrossRefPubMedGoogle Scholar
  40. Ihle NT, Williams R, Chow S, Chew W, Berggren MI, Paine-Murrieta G, Minion DJ, Halter RJ, Wipf P, Abraham R, Kirkpatrick L, Powis G (2004) Molecular pharmacology and antitumor activity of PX-866, a novel inhibitor of phosphoinositide-3-kinase signaling. Mol Cancer Ther 3(7):763–772PubMedGoogle Scholar
  41. Irahara N, Baba Y, Nosho K, Shima K, Yan L, Dias-Santagata D, Iafrate AJ, Fuchs CS, Haigis KM, Ogino S (2010) NRAS mutations are rare in colorectal cancer. Diagn Mol Pathol 19(3):157–163.  https://doi.org/10.1097/PDM.0b013e3181c93fd1 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Janku F, Wheler JJ, Naing A, Falchook GS, Hong DS, Stepanek VM, Fu S, Piha-Paul SA, Lee JJ, Luthra R, Tsimberidou AM, Kurzrock R (2013) PIK3CA mutation H1047R is associated with response to PI3K/AKT/mTOR signaling pathway inhibitors in early-phase clinical trials. Cancer Res 73(1):276–284.  https://doi.org/10.1158/0008-5472.CAN-12-1726 CrossRefPubMedGoogle Scholar
  43. Janku F, Yap TA, Meric-Bernstam F (2018) Targeting the PI3K pathway in cancer: are we making headway? Nat Rev Clin Oncol 15:273–291.  https://doi.org/10.1038/nrclinonc.2018.28 CrossRefPubMedGoogle Scholar
  44. Jass JR (2006) Colorectal cancer: a multipathway disease. Crit Rev Oncog 12(3–4):273–287.  https://doi.org/10.1615/CritRevOncog.v12.i3-4.50 CrossRefPubMedGoogle Scholar
  45. Juric D, Rodon J, Tabernero J, Janku F, Burris HA, Schellens JHM, Middleton MR, Berlin J, Schuler M, Gil-Martin M, Rugo HS, Seggewiss-Bernhardt R, Huang A, Bootle D, Demanse D, Blumenstein L, Coughlin C, Quadt C, Baselga J (2018) Phosphatidylinositol 3-Kinase alpha-selective inhibition with Alpelisib (BYL719) in PIK3CA-altered solid tumors: results from the first-in-human study. J Clin Oncol 36(13):1291-1299.  https://doi.org/10.1200/JCO.2017.72.7107 CrossRefGoogle Scholar
  46. Kim A, Lee JE, Lee SS, Kim C, Lee SJ, Jang WS, Park S (2013) Coexistent mutations of KRAS and PIK3CA affect the efficacy of NVP-BEZ235, a dual PI3K/MTOR inhibitor, in regulating the PI3K/MTOR pathway in colorectal cancer. Int J Cancer 133(4):984–996.  https://doi.org/10.1002/ijc.28073 CrossRefPubMedGoogle Scholar
  47. Lievre A, Blons H, Laurent-Puig P (2010) Oncogenic mutations as predictive factors in colorectal cancer. Oncogene 29(21):3033–3043.  https://doi.org/10.1038/onc.2010.89 CrossRefPubMedGoogle Scholar
  48. Lievre A, Ouine B, Canet J, Cartier A, Amar Y, Cacheux W, Mariani O, Guimbaud R, Selves J, Lecomte T, Guyetant S, Bieche I, Berger F, de Koning L (2017) Protein biomarkers predictive for response to anti-EGFR treatment in RAS wild-type metastatic colorectal carcinoma. Br J Cancer 117(12):1819–1827.  https://doi.org/10.1038/bjc.2017.353 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8(8):627–644.  https://doi.org/10.1038/nrd2926 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lorusso PM (2016) Inhibition of the PI3K/AKT/mTOR pathway in solid tumors. J Clin Oncol 34(31):3803–3815.  https://doi.org/10.1200/JCO.2014.59.0018 CrossRefPubMedGoogle Scholar
  51. Lubomierski N, Plotz G, Wormek M, Engels K, Kriener S, Trojan J, Jungling B, Zeuzem S, Raedle J (2005) BRAF mutations in colorectal carcinoma suggest two entities of microsatellite-unstable tumors. Cancer 104(5):952–961.  https://doi.org/10.1002/cncr.21266 CrossRefPubMedGoogle Scholar
  52. Maira SM, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C, Brachmann S, Chene P, De Pover A, Schoemaker K, Fabbro D, Gabriel D, Simonen M, Murphy L, Finan P, Sellers W, Garcia-Echeverria C (2008) Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther 7(7):1851–1863.  https://doi.org/10.1158/1535-7163.MCT-08-0017 CrossRefPubMedGoogle Scholar
  53. Maira SM, Pecchi S, Huang A, Burger M, Knapp M, Sterker D, Schnell C, Guthy D, Nagel T, Wiesmann M, Brachmann S, Fritsch C, Dorsch M, Chene P, Shoemaker K, De Pover A, Menezes D, Martiny-Baron G, Fabbro D, Wilson CJ, Schlegel R, Hofmann F, Garcia-Echeverria C, Sellers WR, Voliva CF (2012) Identification and characterization of NVP-BKM120, an orally available pan-class I PI3-kinase inhibitor. Mol Cancer Ther 11(2):317–328.  https://doi.org/10.1158/1535-7163.MCT-11-0474 CrossRefPubMedGoogle Scholar
  54. Malesci A, Laghi L, Bianchi P, Delconte G, Randolph A, Torri V, Carnaghi C, Doci R, Rosati R, Montorsi M, Roncalli M, Gennari L, Santoro A (2007) Reduced likelihood of metastases in patients with microsatellite-unstable colorectal cancer. Clin Cancer Res 13(13):3831–3839.  https://doi.org/10.1158/1078-0432.CCR-07-0366 CrossRefPubMedGoogle Scholar
  55. Malkomes P, Lunger I, Luetticke A, Oppermann E, Haetscher N, Serve H, Holzer K, Bechstein WO, Rieger MA (2016) Selective AKT inhibition by MK-2206 represses colorectal cancer-initiating stem cells. Ann Surg Oncol 23(9):2849–2857.  https://doi.org/10.1245/s10434-016-5218-z CrossRefPubMedPubMedCentralGoogle Scholar
  56. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129(7):1261–1274.  https://doi.org/10.1016/j.cell.2007.06.009 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Manning BD, Toker A (2017) AKT/PKB signaling: navigating the network. Cell 169(3):381–405.  https://doi.org/10.1016/j.cell.2017.04.001 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Markham A (2017) Copanlisib: first global approval. Drugs 77(18):2057–2062.  https://doi.org/10.1007/s40265-017-0838-6 CrossRefPubMedGoogle Scholar
  59. Markman B, Tabernero J, Krop I, Shapiro GI, Siu L, Chen LC, Mita M, Melendez Cuero M, Stutvoet S, Birle D, Anak O, Hackl W, Baselga J (2012) Phase I safety, pharmacokinetic, and pharmacodynamic study of the oral phosphatidylinositol-3-kinase and mTOR inhibitor BGT226 in patients with advanced solid tumors. Ann Oncol 23(9):2399–2408.  https://doi.org/10.1093/annonc/mds011 CrossRefPubMedGoogle Scholar
  60. Markowitz SD, Bertagnolli MM (2009) Molecular origins of cancer: molecular basis of colorectal cancer. N Engl J Med 361(25):2449–2460.  https://doi.org/10.1056/NEJMra0804588 CrossRefPubMedPubMedCentralGoogle Scholar
  61. McRee AJ, Davies JM, Sanoff HG, Goldberg RM, Bernard S, Dees EC, Keller K, Ivanova A, O’Neil BH (2014) A phase I trial of everolimus in combination with 5-FU/LV, mFOLFOX6 and mFOLFOX6 plus panitumumab in patients with refractory solid tumors. Cancer Chemother Pharmacol 74(1):117–123.  https://doi.org/10.1007/s00280-014-2474-0 CrossRefPubMedPubMedCentralGoogle Scholar
  62. McRee AJ, Sanoff HK, Carlson C, Ivanova A, O’Neil BH (2015) A phase I trial of mFOLFOX6 combined with the oral PI3K inhibitor BKM120 in patients with advanced refractory solid tumors. Investig New Drugs 33(6):1225–1231.  https://doi.org/10.1007/s10637-015-0298-3 CrossRefGoogle Scholar
  63. Migliardi G, Sassi F, Torti D, Galimi F, Zanella ER, Buscarino M, Ribero D, Muratore A, Massucco P, Pisacane A, Risio M, Capussotti L, Marsoni S, Di Nicolantonio F, Bardelli A, Comoglio PM, Trusolino L, Bertotti A (2012) Inhibition of MEK and PI3K/mTOR suppresses tumor growth but does not cause tumor regression in patient-derived xenografts of RAS-mutant colorectal carcinomas. Clin Cancer Res 18(9):2515–2525.  https://doi.org/10.1158/1078-0432.CCR-11-2683 CrossRefPubMedGoogle Scholar
  64. Mohamed A, Twardy B, AbdAllah N, Akhras A, Ismail H, Zordok M, Schrapp K, Attumi T, Tesfaye A, El-Rayes B (2018) Clinical impact of PI3K/BRAF mutations in RAS wild metastatic colorectal cancer: meta-analysis results. J Gastrointest Cancer.  https://doi.org/10.1007/s12029-018-0062-y
  65. Motzer RJ, Escudier B, Oudard S, Hutson TE, Porta C, Bracarda S, Grunwald V, Thompson JA, Figlin RA, Hollaender N, Urbanowitz G, Berg WJ, Kay A, Lebwohl D, Ravaud A, Group R-S (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372(9637):449–456.  https://doi.org/10.1016/S0140-6736(08)61039-9 CrossRefPubMedGoogle Scholar
  66. Murillo MM, Zelenay S, Nye E, Castellano E, Lassailly F, Stamp G, Downward J (2014) RAS interaction with PI3K p110alpha is required for tumor-induced angiogenesis. J Clin Invest 124(8):3601–3611.  https://doi.org/10.1172/JCI74134 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Nassif NT, Lobo GP, Wu X, Henderson CJ, Morrison CD, Eng C, Jalaludin B, Segelov E (2004) PTEN mutations are common in sporadic microsatellite stable colorectal cancer. Oncogene 23(2):617–628.  https://doi.org/10.1038/sj.onc.1207059 CrossRefPubMedGoogle Scholar
  68. Ng K, Tabernero J, Hwang J, Bajetta E, Sharma S, Del Prete SA, Arrowsmith ER, Ryan DP, Sedova M, Jin J, Malek K, Fuchs CS (2013) Phase II study of everolimus in patients with metastatic colorectal adenocarcinoma previously treated with bevacizumab-, fluoropyrimidine-, oxaliplatin-, and irinotecan-based regimens. Clin Cancer Res 19(14):3987–3995.  https://doi.org/10.1158/1078-0432.CCR-13-0027 CrossRefPubMedPubMedCentralGoogle Scholar
  69. O’Brien MJ, Yang S, Mack C, Xu H, Huang CS, Mulcahy E, Amorosino M, Farraye FA (2006) Comparison of microsatellite instability, CpG island methylation phenotype, BRAF and KRAS status in serrated polyps and traditional adenomas indicates separate pathways to distinct colorectal carcinoma end points. Am J Surg Pathol 30(12):1491–1501.  https://doi.org/10.1097/01.pas.0000213313.36306.85 CrossRefPubMedGoogle Scholar
  70. Oliveira C, Westra JL, Arango D, Ollikainen M, Domingo E, Ferreira A, Velho S, Niessen R, Lagerstedt K, Alhopuro P, Laiho P, Veiga I, Teixeira MR, Ligtenberg M, Kleibeuker JH, Sijmons RH, Plukker JT, Imai K, Lage P, Hamelin R, Albuquerque C, Schwartz S Jr, Lindblom A, Peltomaki P, Yamamoto H, Aaltonen LA, Seruca R, Hofstra RM (2004) Distinct patterns of KRAS mutations in colorectal carcinomas according to germline mismatch repair defects and hMLH1 methylation status. Hum Mol Genet 13(19):2303–2311.  https://doi.org/10.1093/hmg/ddh238 CrossRefPubMedGoogle Scholar
  71. Oliveira C, Velho S, Moutinho C, Ferreira A, Preto A, Domingo E, Capelinha AF, Duval A, Hamelin R, Machado JC, Schwartz S Jr, Carneiro F, Seruca R (2007) KRAS and BRAF oncogenic mutations in MSS colorectal carcinoma progression. Oncogene 26(1):158–163.  https://doi.org/10.1038/sj.onc.1209758 CrossRefPubMedGoogle Scholar
  72. Osmanbeyoglu HU, Toska E, Chan C, Baselga J, Leslie CS (2017) Pancancer modelling predicts the context-specific impact of somatic mutations on transcriptional programs. Nat Commun 8:14249.  https://doi.org/10.1038/ncomms14249 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Papadatos-Pastos D, Rabbie R, Ross P, Sarker D (2015) The role of the PI3K pathway in colorectal cancer. Crit Rev Oncol Hematol 94(1):18–30.  https://doi.org/10.1016/j.critrevonc.2014.12.006 CrossRefPubMedGoogle Scholar
  74. Patnaik A, Appleman LJ, Tolcher AW, Papadopoulos KP, Beeram M, Rasco DW, Weiss GJ, Sachdev JC, Chadha M, Fulk M, Ejadi S, Mountz JM, Lotze MT, Toledo FG, Chu E, Jeffers M, Pena C, Xia C, Reif S, Genvresse I, Ramanathan RK (2016) First-in-human phase I study of copanlisib (BAY 80-6946), an intravenous pan-class I phosphatidylinositol 3-kinase inhibitor, in patients with advanced solid tumors and non-Hodgkin’s lymphomas. Ann Oncol 27(10):1928–1940.  https://doi.org/10.1093/annonc/mdw282 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Pavel AB, Sonkin D, Reddy A (2016) Integrative modeling of multi-omics data to identify cancer drivers and infer patient-specific gene activity. BMC Syst Biol 10:16.  https://doi.org/10.1186/s12918-016-0260-9 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Pitts TM, Newton TP, Bradshaw-Pierce EL, Addison R, Arcaroli JJ, Klauck PJ, Bagby SM, Hyatt SL, Purkey A, Tentler JJ, Tan AC, Messersmith WA, Eckhardt SG, Leong S (2014) Dual pharmacological targeting of the MAP kinase and PI3K/mTOR pathway in preclinical models of colorectal cancer. PLoS One 9(11):e113037.  https://doi.org/10.1371/journal.pone.0113037 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Price T, Kim TW, Li J, Cascinu S, Ruff P, Suresh AS, Thomas A, Tjulandin S, Guan X, Peeters M (2016) Final results and outcomes by prior bevacizumab exposure, skin toxicity, and hypomagnesaemia from ASPECCT: randomized phase 3 non-inferiority study of panitumumab versus cetuximab in chemorefractory wild-type KRAS exon 2 metastatic colorectal cancer. Eur J Cancer 68:51–59.  https://doi.org/10.1016/j.ejca.2016.08.010 CrossRefPubMedGoogle Scholar
  78. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D (2011) RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer 11(11):761–774.  https://doi.org/10.1038/nrc3106 CrossRefPubMedPubMedCentralGoogle Scholar
  79. Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE (2002) Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 418(6901):934.  https://doi.org/10.1038/418934a CrossRefPubMedGoogle Scholar
  80. Ribic CM, Sargent DJ, Moore MJ, Thibodeau SN, French AJ, Goldberg RM, Hamilton SR, Laurent-Puig P, Gryfe R, Shepherd LE, Tu D, Redston M, Gallinger S (2003) Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 349(3):247–257.  https://doi.org/10.1056/NEJMoa022289 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Rodon J, Dienstmann R, Serra V, Tabernero J (2013) Development of PI3K inhibitors: lessons learned from early clinical trials. Nat Rev Clin Oncol 10(3):143–153.  https://doi.org/10.1038/nrclinonc.2013.10 CrossRefPubMedGoogle Scholar
  82. Rodon J, Brana I, Siu LL, De Jonge MJ, Homji N, Mills D, Di Tomaso E, Sarr C, Trandafir L, Massacesi C, Eskens F, Bendell JC (2014) Phase I dose-escalation and -expansion study of buparlisib (BKM120), an oral pan-Class I PI3K inhibitor, in patients with advanced solid tumors. Investig New Drugs 32(4):670–681.  https://doi.org/10.1007/s10637-014-0082-9 CrossRefGoogle Scholar
  83. Roper J, Richardson MP, Wang WV, Richard LG, Chen W, Coffee EM, Sinnamon MJ, Lee L, Chen PC, Bronson RT, Martin ES, Hung KE (2011) The dual PI3K/mTOR inhibitor NVP-BEZ235 induces tumor regression in a genetically engineered mouse model of PIK3CA wild-type colorectal cancer. PLoS One 6(9):e25132.  https://doi.org/10.1371/journal.pone.0025132 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Rozengurt E, Soares HP, Sinnet-Smith J (2014) Suppression of feedback loops mediated by PI3K/mTOR induces multiple overactivation of compensatory pathways: an unintended consequence leading to drug resistance. Mol Cancer Ther 13(11):2477–2488. https://doi.org/10.1158/1535-7163.MCT-14-0330 CrossRefGoogle Scholar
  85. Samatar AA, Poulikakos PI (2014) Targeting RAS-ERK signalling in cancer: promises and challenges. Nat Rev Drug Discov 13(12):928–942.  https://doi.org/10.1038/nrd4281 CrossRefPubMedGoogle Scholar
  86. Sanches JM, Figueiredo J, Fonseca M, Duraes C, Melo S, Esmenio S, Seruca R (2015) Quantification of mutant E-cadherin using bioimaging analysis of in situ fluorescence microscopy. A new approach to CDH1 missense variants. Eur J Hum Genet 23(8):1072–1079.  https://doi.org/10.1038/ejhg.2014.240 CrossRefPubMedGoogle Scholar
  87. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101.  https://doi.org/10.1126/science.1106148 CrossRefPubMedGoogle Scholar
  88. Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, Markhard AL, Sabatini DM (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22(2):159–168.  https://doi.org/10.1016/j.molcel.2006.03.029 CrossRefPubMedGoogle Scholar
  89. Sarker D, Ang JE, Baird R, Kristeleit R, Shah K, Moreno V, Clarke PA, Raynaud FI, Levy G, Ware JA, Mazina K, Lin R, Wu J, Fredrickson J, Spoerke JM, Lackner MR, Yan Y, Friedman LS, Kaye SB, Derynck MK, Workman P, de Bono JS (2015) First-in-human phase I study of pictilisib (GDC-0941), a potent pan-class I phosphatidylinositol-3-kinase (PI3K) inhibitor, in patients with advanced solid tumors. Clin Cancer Res 21(1):77–86.  https://doi.org/10.1158/1078-0432.CCR-14-0947 CrossRefPubMedGoogle Scholar
  90. Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168(6):960–976.  https://doi.org/10.1016/j.cell.2017.02.004 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Schultz RM, Merriman RL, Andis SL, Bonjouklian R, Grindey GB, Rutherford PG, Gallegos A, Massey K, Powis G (1995) In vitro and in vivo antitumor activity of the phosphatidylinositol-3-kinase inhibitor, wortmannin. Anticancer Res 15(4):1135–1139PubMedGoogle Scholar
  92. Sebolt-Leopold JS, Herrera R (2004) Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 4(12):937–947.  https://doi.org/10.1038/nrc1503 CrossRefPubMedGoogle Scholar
  93. Semba S, Itoh N, Ito M, Harada M, Yamakawa M (2002) The in vitro and in vivo effects of 2-(4-morpholinyl)-8-phenyl-chromone (LY294002), a specific inhibitor of phosphatidylinositol 3′-kinase, in human colon cancer cells. Clin Cancer Res 8(6):1957–1963PubMedGoogle Scholar
  94. Serra V, Markman B, Scaltriti M, Eichhorn PJ, Valero V, Guzman M, Botero ML, Llonch E, Atzori F, Di Cosimo S, Maira M, Garcia-Echeverria C, Parra JL, Arribas J, Baselga J (2008) NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res 68(19):8022–8030.  https://doi.org/10.1158/0008-5472.CAN-08-1385 CrossRefPubMedGoogle Scholar
  95. Shapiro GI, Bell-McGuinn KM, Molina JR, Bendell J, Spicer J, Kwak EL, Pandya SS, Millham R, Borzillo G, Pierce KJ, Han L, Houk BE, Gallo JD, Alsina M, Brana I, Tabernero J (2015) First-in-human study of PF-05212384 (PKI-587), a small-molecule, intravenous, dual inhibitor of PI3K and mTOR in patients with advanced cancer. Clin Cancer Res 21(8):1888–1895.  https://doi.org/10.1158/1078-0432.CCR-14-1306 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Shimizu T, Tolcher AW, Papadopoulos KP, Beeram M, Rasco DW, Smith LS, Gunn S, Smetzer L, Mays TA, Kaiser B, Wick MJ, Alvarez C, Cavazos A, Mangold GL, Patnaik A (2012) The clinical effect of the dual-targeting strategy involving PI3K/AKT/mTOR and RAS/MEK/ERK pathways in patients with advanced cancer. Clin Cancer Res 18(8):2316–2325.  https://doi.org/10.1158/1078-0432.CCR-11-2381 CrossRefPubMedGoogle Scholar
  97. Spindler KL, Sorensen MM, Pallisgaard N, Andersen RF, Havelund BM, Ploen J, Lassen U, Jakobsen AK (2013) Phase II trial of temsirolimus alone and in combination with irinotecan for KRAS mutant metastatic colorectal cancer: outcome and results of KRAS mutational analysis in plasma. Acta Oncol 52(5):963–970.  https://doi.org/10.3109/0284186X.2013.776175 CrossRefPubMedGoogle Scholar
  98. Takeda T, Wang Y, Bryant SH (2016) Structural insights of a PI3K/mTOR dual inhibitor with the morpholino-triazine scaffold. J Comput Aided Mol Des 30(4):323–330.  https://doi.org/10.1007/s10822-016-9905-4 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Temraz S, Mukherji D, Shamseddine A (2015) Dual inhibition of MEK and PI3K pathway in KRAS and BRAF mutated colorectal cancers. Int J Mol Sci 16(9):22976–22988.  https://doi.org/10.3390/ijms160922976 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Tenbaum SP, Ordonez-Moran P, Puig I, Chicote I, Arques O, Landolfi S, Fernandez Y, Herance JR, Gispert JD, Mendizabal L, Aguilar S, Ramon y Cajal S, Schwartz S Jr, Vivancos A, Espin E, Rojas S, Baselga J, Tabernero J, Munoz A, Palmer HG (2012) Beta-catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer. Nat Med 18(6):892–901.  https://doi.org/10.1038/nm.2772 CrossRefPubMedGoogle Scholar
  101. Therkildsen C, Bergmann TK, Henrichsen-Schnack T, Ladelund S, Nilbert M (2014) The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer: a systematic review and meta-analysis. Acta Oncol 53(7):852–864.  https://doi.org/10.3109/0284186X.2014.895036 CrossRefPubMedGoogle Scholar
  102. Thorpe LM, Yuzugullu H, Zhao JJ (2015) PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer 15(1):7–24.  https://doi.org/10.1038/nrc3860 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Tolcher AW, Peng W, Calvo E (2018) Rational approaches for combination therapy strategies targeting the MAP kinase pathway in solid tumors. Mol Cancer Ther 17(1):3–16.  https://doi.org/10.1158/1535-7163.MCT-17-0349 CrossRefPubMedGoogle Scholar
  104. Tops CM, Wijnen JT, Hes FJ (2009) Introduction to molecular and clinical genetics of colorectal cancer syndromes. Best Pract Res Clin Gastroenterol 23(2):127–146.  https://doi.org/10.1016/j.bpg.2009.02.002 CrossRefPubMedGoogle Scholar
  105. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108.  https://doi.org/10.3322/caac.21262 CrossRefPubMedGoogle Scholar
  106. van Geel R, Tabernero J, Elez E, Bendell JC, Spreafico A, Schuler M, Yoshino T, Delord JP, Yamada Y, Lolkema MP, Faris JE, Eskens F, Sharma S, Yaeger R, Lenz HJ, Wainberg ZA, Avsar E, Chatterjee A, Jaeger S, Tan E, Maharry K, Demuth T, Schellens JHM (2017) A phase Ib dose-escalation study of Encorafenib and Cetuximab with or without Alpelisib in metastatic BRAF-mutant colorectal cancer. Cancer Discov 7(6):610–619.  https://doi.org/10.1158/2159-8290.CD-16-0795 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Vanhaesebroeck B, Stephens L, Hawkins P (2012) PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol 13(3):195–203.  https://doi.org/10.1038/nrm3290 CrossRefPubMedGoogle Scholar
  108. Vasudevan KM, Barbie DA, Davies MA, Rabinovsky R, McNear CJ, Kim JJ, Hennessy BT, Tseng H, Pochanard P, Kim SY, Dunn IF, Schinzel AC, Sandy P, Hoersch S, Sheng Q, Gupta PB, Boehm JS, Reiling JH, Silver S, Lu Y, Stemke-Hale K, Dutta B, Joy C, Sahin AA, Gonzalez-Angulo AM, Lluch A, Rameh LE, Jacks T, Root DE, Lander ES, Mills GB, Hahn WC, Sellers WR, Garraway LA (2009) AKT-independent signaling downstream of oncogenic PIK3CA mutations in human cancer. Cancer Cell 16(1):21–32.  https://doi.org/10.1016/j.ccr.2009.04.012 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Velho S, Oliveira C, Ferreira A, Ferreira AC, Suriano G, Schwartz S Jr, Duval A, Carneiro F, Machado JC, Hamelin R, Seruca R (2005) The prevalence of PIK3CA mutations in gastric and colon cancer. Eur J Cancer 41(11):1649–1654.  https://doi.org/10.1016/j.ejca.2005.04.022 CrossRefPubMedGoogle Scholar
  110. Velho S, Moutinho C, Cirnes L, Albuquerque C, Hamelin R, Schmitt F, Carneiro F, Oliveira C, Seruca R (2008) BRAF, KRAS and PIK3CA mutations in colorectal serrated polyps and cancer: primary or secondary genetic events in colorectal carcinogenesis? BMC Cancer 8:255.  https://doi.org/10.1186/1471-2407-8-255 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Velho S, Corso G, Oliveira C, Seruca R (2010) KRAS signaling pathway alterations in microsatellite unstable gastrointestinal cancers. Adv Cancer Res 109:123–143.  https://doi.org/10.1016/B978-0-12-380890-5.00004-1 CrossRefPubMedGoogle Scholar
  112. Vilar E, Gruber SB (2010) Microsatellite instability in colorectal cancer-the stable evidence. Nat Rev Clin Oncol 7(3):153–162.  https://doi.org/10.1038/nrclinonc.2009.237 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Walther A, Johnstone E, Swanton C, Midgley R, Tomlinson I, Kerr D (2009) Genetic prognostic and predictive markers in colorectal cancer. Nat Rev Cancer 9(7):489–499.  https://doi.org/10.1038/nrc2645 CrossRefPubMedGoogle Scholar
  114. Welch S, Spithoff K, Rumble RB, Maroun J, Gastrointestinal Cancer Disease Site G (2010) Bevacizumab combined with chemotherapy for patients with advanced colorectal cancer: a systematic review. Ann Oncol 21(6):1152–1162.  https://doi.org/10.1093/annonc/mdp533 CrossRefPubMedGoogle Scholar
  115. Weng W, Feng J, Qin H, Ma Y (2015) Molecular therapy of colorectal cancer: progress and future directions. Int J Cancer 136(3):493–502.  https://doi.org/10.1002/ijc.28722 CrossRefPubMedGoogle Scholar
  116. Wheler J, Mutch D, Lager J, Castell C, Liu L, Jiang J, Traynor AM (2017) Phase I dose-escalation study of Pilaralisib (SAR245408, XL147) in combination with paclitaxel and carboplatin in patients with solid tumors. Oncologist 22(4):377–e337.  https://doi.org/10.1634/theoncologist.2016-0257 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Will M, Qin AC, Toy W, Yao Z, Rodrik-Outmezguine V, Schneider C, Huang X, Monian P, Jiang X, de Stanchina E, Baselga J, Liu N, Chandarlapaty S, Rosen N (2014) Rapid induction of apoptosis by PI3K inhibitors is dependent upon their transient inhibition of RAS-ERK signaling. Cancer Discov 4(3):334–347.  https://doi.org/10.1158/2159-8290.CD-13-0611 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Wise-Draper TM, Moorthy G, Salkeni MA, Karim NA, Thomas HE, Mercer CA, Beg MS, O’Gara S, Olowokure O, Fathallah H, Kozma SC, Thomas G, Rixe O, Desai P, Morris JC (2017) A phase Ib study of the dual PI3K/mTOR inhibitor Dactolisib (BEZ235) combined with Everolimus in patients with advanced solid malignancies. Target Oncol 12(3):323–332.  https://doi.org/10.1007/s11523-017-0482-9 CrossRefPubMedPubMedCentralGoogle Scholar
  119. Wolpin BM, Ng K, Zhu AX, Abrams T, Enzinger PC, McCleary NJ, Schrag D, Kwak EL, Allen JN, Bhargava P, Chan JA, Goessling W, Blaszkowsky LS, Supko JG, Elliot M, Sato K, Regan E, Meyerhardt JA, Fuchs CS (2013) Multicenter phase II study of tivozanib (AV-951) and everolimus (RAD001) for patients with refractory, metastatic colorectal cancer. Oncologist 18(4):377–378.  https://doi.org/10.1634/theoncologist.2012-0378 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Yang Q, Modi P, Newcomb T, Queva C, Gandhi V (2015) Idelalisib: first-in-class PI3K felta inhibitor for the treatment of chronic lymphocytic leukemia, small lymphocytic leukemia, and follicular lymphoma. Clin Cancer Res 21(7):1537–1542.  https://doi.org/10.1158/1078-0432.CCR-14-2034 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Yap TA, Yan L, Patnaik A, Fearen I, Olmos D, Papadopoulos K, Baird RD, Delgado L, Taylor A, Lupinacci L, Riisnaes R, Pope LL, Heaton SP, Thomas G, Garrett MD, Sullivan DM, de Bono JS, Tolcher AW (2011) First-in-man clinical trial of the oral pan-AKT inhibitor MK-2206 in patients with advanced solid tumors. J Clin Oncol 29(35):4688–4695.  https://doi.org/10.1200/JCO.2011.35.5263 CrossRefPubMedGoogle Scholar
  122. Zhang H, Bajraszewski N, Wu E, Wang H, Moseman AP, Dabora SL, Griffin JD, Kwiatkowski DJ (2007) PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. J Clin Invest 117(3):730–738.  https://doi.org/10.1172/JCI28984 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Maria Sofia Fernandes
    • 1
    • 2
    • 3
  • João Miguel Sanches
    • 1
  • Raquel Seruca
    • 2
    • 3
    • 4
    Email author
  1. 1.Institute for Systems and Robotics (ISR), Instituto Superior Técnico (IST)LisboaPortugal
  2. 2.Instituto de Investigação e Inovação em Saúde (i3S)University of PortoPortoPortugal
  3. 3.Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP)PortoPortugal
  4. 4.Faculty of MedicineUniversity of PortoPortoPortugal

Personalised recommendations