Skip to main content

Automated Proof Synthesis for the Minimal Propositional Logic with Deep Neural Networks

  • Conference paper
  • First Online:
  • 773 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11275))

Abstract

This work explores the application of deep learning, a machine learning technique that uses deep neural networks (DNN) in its core, to an automated theorem proving (ATP) problem. To this end, we construct a statistical model which quantifies the likelihood that a proof is indeed a correct one of a given proposition. Based on this model, we give a proof-synthesis procedure that searches for a proof in the order of the likelihood. This procedure uses an estimator of the likelihood of an inference rule being applied at each step of a proof. As an implementation of the estimator, we propose a proposition-to-proof architecture, which is a DNN tailored to the automated proof synthesis problem. To empirically demonstrate its usefulness, we apply our model to synthesize proofs of the minimal propositional logic. We train the proposition-to-proof model using a training dataset of proposition–proof pairs. The evaluation against a benchmark set shows the very high accuracy and an improvement to the recent work of neural proof synthesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Following the convention of neural network research, we use the word “model” both for a statistical model and for a trained DNN.

  2. 2.

    We can annotate \(\textsf {typeof}( M )\) by applying a standard type-inference algorithm for the simply typed lambda calculus to \( M \).

  3. 3.

    It is not clear from Mou et al. [25] how they express an AST as a binary tree in their implementation.

  4. 4.

    Epoch is the unit that means how many times the dataset is scanned during the training.

  5. 5.

    See the full version [30] for the detail. The low accuracy of these rules does not influence the overall accuracy much because the validation dataset does not contain many applications of them either.

  6. 6.

    The source code is at http://www2.disco.unimib.it/fiorino/pitp.html; accessed on 26/8/2018.

References

  1. Avellone, A., Fiorino, G., Moscato, U.: A new \(O(n \log {n})\)-space decision procedure for propositional intuitionistic logic. Kurt Gödel Society Collegium Logicum VIII, 17–33 (2004)

    Google Scholar 

  2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. CoRR abs/1409.0473 (2014)

    Google Scholar 

  3. Barnett, M., et al.: The Spec# programming system: challenges and directions. In: Meyer, B., Woodcock, J. (eds.) VSTTE 2005. LNCS, vol. 4171, pp. 144–152. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69149-5_16

    Chapter  Google Scholar 

  4. Ben-Yelles, C.: Type assignment in the lambda-calculus: syntax and semantics. Ph.D. thesis, University College of Swansea, September 1979

    Google Scholar 

  5. Bibel, W.: Automated Theorem Proving. Springer, Heidelberg (2013)

    Google Scholar 

  6. Bünz, B., Lamm, M.: Graph neural networks and boolean satisfiability. CoRR abs/1702.03592 (2017)

    Google Scholar 

  7. Chalin, P., James, P.R., Karabotsos, G.: An integrated verification environment for JML: architecture and early results. In: Proceedings of SAVCBS, pp. 47–53. ACM, New York (2007)

    Google Scholar 

  8. Evans, R., Saxton, D., Amos, D., Kohli, P., Grefenstette, E.: Can neural networks understand logical entailment? CoRR abs/1802.08535 (2018)

    Google Scholar 

  9. Filliâtre, J.-C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6_8

    Chapter  Google Scholar 

  10. Fukushima, K.: Neocognitron: a self-organizing neural network for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36, 193–202 (1980)

    Article  Google Scholar 

  11. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of AISTATS, pp. 315–323 (2011)

    Google Scholar 

  12. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  13. Harrison, J.: HOL light: an overview. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60–66. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9_4

    Chapter  Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of CVPR, pp. 770–778 (2016)

    Google Scholar 

  15. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Sig. Process. Mag. 29(6), 82–97 (2012)

    Article  Google Scholar 

  16. Irving, G., Szegedy, C., Alemi, A.A., Eén, N., Chollet, F., Urban, J.: DeepMath - deep sequence models for premise selection. In: Proceedings of NIPS, pp. 2235–2243 (2016)

    Google Scholar 

  17. Johnson, J.L.: A neural network approach to the 3-satisfiability problem. J. Parallel Distrib. Comput. 6(2), 435–449 (1989)

    Article  Google Scholar 

  18. Kaliszyk, C., Chollet, F., Szegedy, C.: HolStep: a machine learning dataset for higher-order logic theorem proving. CoRR abs/1703.00426 (2017)

    Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2014)

    Google Scholar 

  20. Klein, G., et al.: seL4: formal verification of an OS kernel. In: Proceedings of SOSP, pp. 207–220 (2009)

    Google Scholar 

  21. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings of NIPS, pp. 1106–1114 (2012)

    Google Scholar 

  22. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–115 (2009)

    Article  Google Scholar 

  23. Loos, S.M., Irving, G., Szegedy, C., Kaliszyk, C.: Deep network guided proof search. In: Proceedings of LPAR, pp. 85–105 (2017)

    Google Scholar 

  24. Milner, R.: A theory of type polymorphism in programming. J. Comput. Syst. Sci. 17(3), 348–375 (1978)

    Article  MathSciNet  Google Scholar 

  25. Mou, L., Li, G., Zhang, L., Wang, T., Jin, Z.: Convolutional neural networks over tree structures for programming language processing. In: Proceedings of AAAI, pp. 1287–1293 (2016)

    Google Scholar 

  26. Raths, T., Otten, J., Kreitz, C.: The ILTP problem library for intuitionistic logic. J. Autom. Reason. 38(1–3), 261–271 (2007)

    Article  MathSciNet  Google Scholar 

  27. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Netw. 20(1), 61–80 (2009)

    Article  Google Scholar 

  28. Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45221-5_49

    Chapter  Google Scholar 

  29. Sekiyama, T., Imanishi, A., Suenaga, K.: Towards proof synthesis guided by neural machine translation for intuitionistic propositional logic. CoRR abs/1706.06462 (2017)

    Google Scholar 

  30. Sekiyama, T., Suenaga, K.: Automated proof synthesis for propositional logic with deep neural networks. CoRR abs/1805.11799 (2018). http://arxiv.org/abs/1805.11799

  31. Selsam, D., Lamm, M., Bünz, B., Liang, P., de Moura, L., Dill, D.L.: Learning a SAT solver from single-bit supervision. CoRR abs/1802.03685 (2018)

    Google Scholar 

  32. Sørensen, M.H., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism. Studies in Logic and the Foundations of Mathematics, vol. 149. Elsevier Science Inc., Amsterdam (2006)

    Chapter  Google Scholar 

  33. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Proceedings of NIPS, pp. 3104–3112 (2014)

    Google Scholar 

  34. Tokui, S., Oono, K., Hido, S., Clayton, J.: Chainer: a next-generation open source framework for deep learning. In: Proceedings of workshop on LearningSys (2015)

    Google Scholar 

  35. Wang, M., Tang, Y., Wang, J., Deng, J.: Premise selection for theorem proving by deep graph embedding. In: Proceedings of NIPS, pp. 2783–2793 (2017)

    Google Scholar 

Download references

Acknowledgments

We are grateful to Akifumi Imanishi, Kensuke Kojima, and Takayuki Muranushi for the discussion and the contribution to the earlier version of the present work. Kohei Suenaga is supported by JST PRESTO Grant Number JPMJPR15E5, Japan. Taro Sekiyama is supported by ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603), JST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taro Sekiyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sekiyama, T., Suenaga, K. (2018). Automated Proof Synthesis for the Minimal Propositional Logic with Deep Neural Networks. In: Ryu, S. (eds) Programming Languages and Systems. APLAS 2018. Lecture Notes in Computer Science(), vol 11275. Springer, Cham. https://doi.org/10.1007/978-3-030-02768-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02768-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02767-4

  • Online ISBN: 978-3-030-02768-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics