Skip to main content

Functional Electrical Stimulation

  • Chapter
  • First Online:
  • 361 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Neuromuscular Electrical Stimulation (NMES) consists on applying electrical pulses to peripheral motor nerve fibers in order to generate muscle contractions. If these muscle contractions are generated in a coordinated manner aiming at achieving a specific function, it is called Functional Electrical Stimulation (FES). Although FES also includes sensory functions, in this chapter only basics of FES applied to muscles will be described, since sensory FES does not concern to the thesis topic. Thus, the basic functioning principles are the same for NMES and FES in this case.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P.H. Peckham, J.S. Knutson, Functional electrical stimulation for neuromuscular applications. Ann. Rev. Biomed. Eng. 7, 327–360 (2005)

    Article  Google Scholar 

  2. L.L. Baker, D.R. McNeal, L.A. Benton, B.R. Bowman, R.L. Waters, Neuro Muscular Electrical Stimulation: A Practical Guide, 3rd edn. (Los Amigos Research and Education Institute, California, 1993)

    Google Scholar 

  3. D.R. Merril, M. Bikson, J.G. Jefferys, Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods 141, 171–198 (2005)

    Article  Google Scholar 

  4. B.R. Bowman, L.L. Baker, Effects of waveform parameters on comfort during transcutaneous neuromuscular electrical stimulation. Ann. Biomed. Eng. 13, 59–74 (1985)

    Article  Google Scholar 

  5. G. Kantor, G. Alon, H.S. Ho, The effects of selected stimulus waveforms on pulse and phase characteristics at sensory and motor thresholds. Phys. Ther. 74, 951–962 (1994)

    Article  Google Scholar 

  6. A. Wongsarnpigoon, J.P. Woock, W.M. Grill, Efficiency analysis of waveform shape for electrical excitation of nerve fibers. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 319–328 (2010)

    Article  Google Scholar 

  7. D.M. Durand, W.M. Grill, R. Kirsch, Electrical stimulation of the neuromuscular system, in Neural Engineering (Springer, Berlin, 2005), pp. 157–191

    Google Scholar 

  8. D.N. Rushton, Functional electrical stimulation. Physiol. Meas. 18, 241–275 (1997)

    Article  Google Scholar 

  9. T. Kesar, S. Binder-Macleod, Effect of frequency and pulse duration on human muscle fatigue during repetitive electrical stimulation. Exp. Physiol. 91, 967–976 (2006)

    Article  Google Scholar 

  10. M. Lawrence, Transcutaneous Electrode Technology for Neuroprostheses. Ph.D. thesis. ETH Zurich, 2009

    Google Scholar 

  11. A. Kuhn, T. Keller, M. Lawrence, M. Morari, The influence of electrode size on selectivity and comfort in transcutaneous electrical stimulation of the forearm. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 255–262 (2010)

    Article  Google Scholar 

  12. J.P. Uhlir, R.J. Triolo, J. Davis, C. Bieri, Performance of epimysial stimulating electrodes in the lower extremities of individuals with spinal cord injury. IEEE Trans. Neural Syst. Rehabil. Eng. 12, 279–287 (2004)

    Article  Google Scholar 

  13. W.D. Memberg, P.H. Peckham, M.W. Keith, A surgically-implanted intramuscular electrode for an implantable neuromuscular stimulation system. IEEE Trans. Rehabil. Eng. 2, 80–91 (1994)

    Article  Google Scholar 

  14. W. Mayr, Multichannel stimulation of phrenic nerves by epineural electrodes: clinical experience and future developments. Am. Soc. Artif. Intern. Organs J. 39, 729–735 (1993)

    Google Scholar 

  15. G.G. Naples, J.T. Mortimer, A. Scheiner, J.D. Sweeney, A spiral nerve cuff electrode for peripheral nerve stimulation. IEEE Trans. Biomed. Eng. 35, 905–916 (1988)

    Article  Google Scholar 

  16. K.S. Wuolle, C.L. Van Doren, A.M. Bryden, P.H. Peckham, M.W. Keith, K.L. Kilgore, J.H. Grill, Satisfaction with and usage of a hand neuroprosthesis. Arch. Phys. Med. Rehabil. 80, 206–213 (1999)

    Article  Google Scholar 

  17. E.B. Marsolais, R. Kobetic, Implantation techniques and experience with percutaneous intramuscular electrodes in the lower extremities. J. Rehabil. Res. Dev. 23, 1–8 (1986)

    Google Scholar 

  18. J.S. Knutson, G.G. Naples, P.H. Peckham, M.W. Keith, Electrode fracture rates and occurrences of infection and granuloma associated with percutaneous intramuscular electrodes in upper-limb functional electrical stimulation applications. J. Rehabil. Res. Dev. 39, 671–684 (2002)

    Google Scholar 

  19. E.B. Marsolais, R. Kobetic, Development of a practical electrical stimulation system for restoring gait in the paralyzed patient. Clin. Orthop. Relat. Res. 233, 64–74 (1988)

    Google Scholar 

  20. T. Keller, A. Kuhn, Electrodes for transcutaneous (surface) electrical stimulation. J. Autom. Control 18, 35–45 (2008)

    Article  Google Scholar 

  21. N. Sha, L.P.J. Kenney, B.W. Heller, A.T. Barker, D. Howard, W. Wang, The effect of the impedance of a thin hydrogel electrode on sensation during functional electrical stimulation. Med. Eng. Phys. 30, 739–746 (2008)

    Article  Google Scholar 

  22. A.J. Westerveld, A.C. Schouten, P.H. Veltink, H. van der Kooij, Selectivity and resolution of surface electrical stimulation for grasp and release. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 94–101 (2012)

    Article  Google Scholar 

  23. A. Popovic-Bijelic, G. Bijelic, N. Jorgovanovic, D. Bojanic, M.B. Popovic, D.B. Popovic, Multi-Field Surface Electrode for Selective Electrical Stimulation. Artificial organs 29, 448–452 (2005)

    Article  Google Scholar 

  24. N.M. Malesevic, L.Z. Popovic, L. Schwirtlich, D.B. Popovic, Distributed low-frequency functional electrical stimulation delays muscle fatigue compared to conventional stimulation. Muscle Nerve 42, 556–562 (2010)

    Article  Google Scholar 

  25. N. Malesevic, L. Popovic, G. Bijelic, G. Kvascev, Muscle twitch responses for shaping the multi-pad electrode for functional electrical stimulation. J. Autom. Control 20, 53–58 (2010)

    Article  Google Scholar 

  26. D.B. Popovic, M.B. Popovic, Automatic determination of the optimal shape of a surface electrode: selective stimulation. J. Neurosci. Methods 178, 174–181 (2009)

    Article  Google Scholar 

  27. K.T. Ragnarsson, Functional electrical stimulation after spinal cord injury: current use, therapeutic effects and future directions. Spinal Cord 46, 255–274 (2008)

    Article  Google Scholar 

  28. C.L. Barrett, G.E. Mann, P.N. Taylor, P. Strike, A randomized trial to investigate the effects of functional electrical stimulation and therapeutic exercise on walking performance for people with multiple sclerosis. Mult. Scler. 15, 493–504 (2009)

    Article  Google Scholar 

  29. D.B. Popovic, T. Sinkjaer, M.B. Popovic, Electrical stimulation as a means for achieving recovery of function in stroke patients. Neurorehabilitation 25, 45–58 (2009)

    Google Scholar 

  30. P.A. Wright, M.H. Granat, Therapeutic effects of functional electrical stimulation of the upper limb of eight children with cerebral palsy. Dev. Med. Child Neurol. 42, 724–727 (2000)

    Article  Google Scholar 

  31. S.D. Cook, Handbook of Multiple Sclerosis, 3rd edn. (Marcel Dekker, 2001)

    Google Scholar 

  32. F. Miller, Physical Therapy of Cerebral Palsy (Springer, Berlin, 2007)

    Google Scholar 

  33. J.P. Mohr, J.C. Grotta, P.A. Wolf, M.A. Moskowitz, M.R. Mayberg, R. Von Kummer, Stroke: Pathophysiology, Diagnosis, and Management (Elsevier Health Sciences, 2011)

    Google Scholar 

  34. T. Brandt, L.R. Caplan, J. Dichgans, H.C. Diener, Christopher Kennard, Neurological Disorders: Course and Treatment (Academic Press, San Diego, 2003)

    Google Scholar 

  35. T.M. Skirven, A.L. Osterman, J. Fedorczyk, P.C. Amadio, Rehabil. Hand Upper Extrem., 6th edn. (Mosby, Elsevier, 2011)

    Google Scholar 

  36. M.C. Cirstea, F.L. Mindy, Compensatory strategies for reaching in stroke. Brain 123, 940–953 (2000)

    Article  Google Scholar 

  37. G.M. Lyons, T. Sinkjaer, J.H. Burridge, D.J. Wilcox, A review of portable FES-based neural orthoses for the correction of drop foot. IEEE Trans. Neural Syst. Rehabil. Eng. 10, 260–279 (2002)

    Article  Google Scholar 

  38. A.I. Kottink, L.J. Oostendorp, J.H. Buurke, A.V. Nene, H.J. Hermens, M.J. IJzerman, The orthotic effect of functional electrical stimulation on the improvement of walking in stroke patients with a dropped foot: a systematic review. Artif. Organs 28, 577–586 (2004)

    Article  Google Scholar 

  39. D. Guiraud, T. Stieglitz, K.P. Koch, J.L. Divoux, P. Rabischong, An implantable neuroprosthesis for standing and walking in paraplegia: 5-year patient follow-up. J. Neural Eng. 3, 268–275 (2006)

    Article  Google Scholar 

  40. V.K. Mushahwar, P.L. Jacobs, R.A. Normann, R.J. Triolo, N. Kleitman, New functional electrical stimulation approaches to standing and walking. J. Neural Eng. 4, 181–197 (2007)

    Article  Google Scholar 

  41. W.D. Memberg, Implanted neuroprosthesis for restoring arm and hand function in people with high level tetraplegia. Arch. Phys. Med. Rehabil. 95, 1201–1211 (2014)

    Article  Google Scholar 

  42. M.R. Popovic, D.B. Popovic, T. Keller, Neuroprostheses for grasping. Neurol. Res. 24, 443–452 (2002)

    Article  Google Scholar 

  43. S. Hamid, R. Hayek, Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview. Eur. Spine J. 17, 1256–1269 (2008)

    Article  Google Scholar 

  44. T.A. Thrasher, V. Zivanovic, W. McIlroy, M.R. Popovic, Rehabilitation of reaching and grasping function in severe hemiplegic patients using functional electrical stimulation therapy. Neurorehabil. Neural Repair 22, 706–714 (2008)

    Article  Google Scholar 

  45. E.C. Field-Fote, D. Tepavac, Improved intralimb coordination in people with incomplete spinal cord injury following training with body weight support and electrical stimulation. Phys. Ther. 82, 707–715 (2002)

    Google Scholar 

  46. T.J. Kimberley, S.M. Lewis, E.J. Auerbach, L.L. Dorsey, J.M. Lojovich, J.R. Carey, Electrical stimulation driving functional improvements and cortical changes in subjects with stroke. Exp. Brain Res. 154, 450–460 (2004)

    Article  Google Scholar 

  47. D.G. Everaert, A.K. Thompson, S.L. Chong, R.B. Stein, Does functional electrical stimulation for foot drop strengthen corticospinal connections? Neurorehabil. Neural Repair 24, 168–177 (2009)

    Article  Google Scholar 

  48. K. Sasaki, T. Matsunaga, T. Tomite, T. Yoshikawa, Y. Shimada, Effect of electrical stimulation therapy on upper extremity functional recovery and cerebral cortical changes in patients with chronic hemiplegia. Biomed. Res. 33, 89–96 (2012)

    Article  Google Scholar 

  49. A.H. Bakhtiary, E. Fatemy, Does electrical stimulation reduce spasticity after stroke? a randomized controlled study. Clin. Rehabil. 22, 418–425 (2008)

    Article  Google Scholar 

  50. T.P. Seib, R. Price, M.R. Reyes, J.F. Lehmann, The quantitative measurement of spasticity: effect of cutaneous electrical stimulation. Arch. Phys. Med. Rehabil. 75, 746–750 (1994)

    Google Scholar 

  51. J. Glinsky, L. Harvey, P. van Es, Efficacy of electrical stimulation to increase muscle strength in people with neurological conditions: a systematic review. Physiother. Res. Int. 12, 175–194 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eukene Imatz Ojanguren .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Imatz Ojanguren, E. (2019). Functional Electrical Stimulation. In: Neuro-fuzzy Modeling of Multi-field Surface Neuroprostheses for Hand Grasping. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-02735-3_3

Download citation

Publish with us

Policies and ethics