Autonomous Robot KUKA YouBot Navigation Based on Path Planning and Traffic Signals Recognition

  • Carlos GordónEmail author
  • Patricio EncaladaEmail author
  • Henry Lema
  • Diego León
  • Cristian Peñaherrera
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 880)


We present the successful demonstration of autonomous robot KUKA YouBot navigation based on path planning and traffic signals recognition. The integration of both capabilities path planning and traffic signals recognition was carried out, thanks to the integration among Robot Operating System, MATrix LABoratory software and Open Source Computer Vision Library working environments. The Robot Operating System allows the simulation of the autonomous robot navigation by using Gazebo and provides the implementation of the algorithms in simulated and real platforms. MATrix LABoratory software improves the communication tasks taking advantage of data processing tools in the path planning process. Finally, Open Source Computer Vision Library allows the traffic signals recognition by using the Scale-Invariant Feature Transform and Speeded-Up Robust Features algorithm. The integration of Robot Operating System, MATrix LABoratory software and Open Source Computer Vision Library is a promising approach to provide autonomous navigation capability in any mobile robot and in uncontrolled environments.


Autonomous navigation KUKA YouBot Robot operating system component Path planning Traffic signals recognition 



The authors acknowledge the Technical University of Ambato in Ecuador for providing all support and facilities including the robot KUKA YouBot.


  1. 1.
    Perez, A., Karaman, S., Shkolnik, A., Frazzoli, E., Teller, S., Walter, M.R.: Asymptotically-optimal path planning for manipulation using incremental sampling based algorithms. In: IEEE/RSJ International Conference Intelligent Robots and Systems, pp. 4307–4313 (2011)Google Scholar
  2. 2.
    Corke, P.: Integrating ROS and MATLAB. IEEE Robot. Autom. Mag. 22(2), 18–20 (2015)CrossRefGoogle Scholar
  3. 3.
    Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T.: ROS: an opensource robot operating system. In: ICRA Workshop on Open Source Software, vol. 3, no. 2, p. 5 (2009)Google Scholar
  4. 4.
    Matlab: Robotics System Toolbox. Accessed 21 Mar 2018
  5. 5.
    Bradski, G., Kaehler, A.: OpenCV. Dr. Dobb’s journal of software tools, 3ed (2000)Google Scholar
  6. 6.
    Kumar, N., Zoltán, V., Szabó-Resch, Z.: Robot path pursuit using probabilistic roadmap. In: IEEE 17th International Symposium on Computational Intelligence and Informatics (CINTI), pp. 000139–000144 (2016)Google Scholar
  7. 7.
    Adorni, G., Monica, M., Agostino, P.: Autonomous agents coordination through traffic signals and rules. In: IEEE Conference on Intelligent Transportation System (ITSC 1997), pp. 290–295 (1997)Google Scholar
  8. 8.
    Kavraki, L.E., Švestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)CrossRefGoogle Scholar
  9. 9.
    Amith, A.L., Singh, A., Harsha, H.N., Prasad, N.R., Shrinivasan, L.: Normal probability and heuristics based path planning and navigation system for mapped roads. Procedia Comput. Sci. 89, 369–377 (2016)CrossRefGoogle Scholar
  10. 10.
    Akulovi, M., Ikeš, M., Petrovi, I.: Efficient interpolated path planning of mobile robots based on occupancy grid maps. IFAC Proc. 45(22), 349–354 (2012)CrossRefGoogle Scholar
  11. 11.
    Jun, J.Y., Saut, J.P., Benamar, F.: Pose estimation-based path planning for a tracked mobile robot traversing uneven terrains. Rob. Auton. Syst. 75, 325–339 (2016)CrossRefGoogle Scholar
  12. 12.
    Mahadevan, S.: Machine learning for robots: a comparison of different paradigms. In: Workshop on Towards Real Autonomy, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 1996) (1996)Google Scholar
  13. 13.
    Lidoris, G., Rohrmuller, F., Wollherr, D., Buss, M.: The Autonomous City Explorer (ACE) project—mobile robot navigation in highly populated urban environments. In: IEEE International Conference on Robotics and Automation (ICRA 2009), pp. 1416–1422 (2009)Google Scholar
  14. 14.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Bay, H., Tinne, T. Luc Van, G.: Surf: speeded up robust features. In: European Conference on Computer Vision, pp. 404–417. Springer, Berlin (2006)CrossRefGoogle Scholar
  16. 16.
    Craig, C.: A Robotics Framework for Simulation and Control of a Robotic Arm for Use in Higher Education. MS in Computer Science Project Reports (2017)Google Scholar
  17. 17.
    Galli, M., Barber, R., Garrido, S., Moreno, L.: Path planning using Matlab-ROS integration applied to mobile robots. In: IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp. 98–103 (2017)Google Scholar
  18. 18.
    Kavraki, L.E., Latombe, J.C., Latombe, E.: Probabilistic roadmaps for robot path planning. In: Practical Motion Planning Robotics Current Approaches and Future Directions, pp. 1–21 (1998)Google Scholar
  19. 19.
    Bohlin, R., Kavraki, L.E.: Path planning using lazy PRM. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, pp. 521–528 (2000)Google Scholar
  20. 20.
    LaValle, S.M.: Rapidly-exploring random trees: a new tool for path planning. Citeseerx, vol. 129, pp. 98–11 (1998)Google Scholar
  21. 21.
    Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Proceedings of the 11th European Conference on Computer Vision, ser. ECCV 2010, pp. 778–792. Springer, Berlin (2010)CrossRefGoogle Scholar
  22. 22.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: IEEE International Conference on Computer Vision (ICCV) (2011)Google Scholar
  23. 23.
    Dreuw, P., Steingrube, P., Hanselmann, H. Ney, H.: SURF-face: face recognition under viewpoint consistency constraints. In: BMVC, pp. 1–11 (2009)Google Scholar
  24. 24.
    Shaharyar, T., Khan, A., Saleem, Z.: A comparative analysis of SIFT, SURF, KAZE, AKAZE, ORB, and BRISK. In: International Conference on Computing, Mathematics and Engineering Technologies (iCoMET) (2018)Google Scholar
  25. 25.
    Zrira, N., Hannat, M., Bouyakhf, E. H., Ahmad, H.: 2D/3D object recognition and categorization approaches for robotic grasping. In: Advances in Soft Computing and Machine Learning in Image Processing, pp. 567–593. Springer, Cham (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Facultad de Ingeniería en Sistemas, Electrónica e IndustrialUniversidad Técnica de AmbatoAmbatoEcuador

Personalised recommendations