Applying Waterjet Technology in Surgical Procedures

  • George AbdouEmail author
  • Nadi Atalla
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 880)


The main objective of the paper is to predict the optimal waterjet pressure required to cut, drill or debride the skin layers without causing any damages to the organs. A relationship between the waterjet pressure and skin thickness has been established. It also includes the modulus of elasticity of the skin, the diameter of nozzle orifice, the nozzle standoff distance and the traverse speed of the waterjet as well as the duration of applying the waterjet pressure. Thus, practical relationship between waterjet operating parameters and the physical properties of the skin has been formulated. A real Caesarean section procedure data has been applied to the formulation. Given the Ultimate Tensile Strength of the skin at the abdomen to be 20 MPa, incision parameters of 18 mm deep, 12 cm long and 0.4 mm wide, applying a traverse speed of 0.5 mm/s and stand-off distance of 5 mm, the resulted waterjet pressure is 17.89 MPa using a 0.4 mm orifice diameter.


Waterjet Surgery Skin Incision 


  1. 1.
    Areeratchakul, N.: Investigation of water jet based skin surgery (2002)Google Scholar
  2. 2.
    Yildirim, G.: Using Water jet technology to perform skin surgery (2003)Google Scholar
  3. 3.
    Hreha, P., Hloch, S., Magurová, D., Valíček, J., Kozak, D., Harničárová, M., Rakin, M.: Water jet technology used in medicine. Tech. Gaz. 17(2), 237–240 (2010)Google Scholar
  4. 4.
    Bahls, T., et al.: Extending the capability of using a waterjet in surgical interventions by the use of robotics. IEEE Trans. Biomed. Eng. 64(2), 284–294 (2017)CrossRefGoogle Scholar
  5. 5.
    Rennekampff, H.-O., Schaller, H.-E., Wisser, D., Tenenhaus, M.: Debridement of burn wounds with a water jet surgical tool. Burns 32, 64–69 (2006)CrossRefGoogle Scholar
  6. 6.
    Tenenhaus, M., Bhavsar, D., Rennekampff, H.-O.: Treatment of deep partial thickness and indeterminate depth facial burn wounds with water—jet debridement and a biosynthetic dressing. Inj. Int. J. Care Inj. 38, 538–544 (2007)CrossRefGoogle Scholar
  7. 7.
    Kraaij, G., et al.: Waterjet cutting of periprosthetic interface tissue in loosened hip prostheses: an in vitro feasibility study. Med. Eng. Phys. 37(2), 245–250 (2015)CrossRefGoogle Scholar
  8. 8.
    Arif, S.M.: Finite element analysis of skin injuries by water jet cutting. In: Mechanical and Industrial Engineering. New Jersey Institute of Technology, Newark (1997)Google Scholar
  9. 9.
    Vichyavichien, K.: Interventions of water jet technology on skin surgery (1999)Google Scholar
  10. 10.
    Wanner, M., Jacob, S., Schwarzl, F., Oberholzer, M., Pierer, G.: Optimizing the parameters for hydro-jet dissection in fatty tissue - a morphological ex vivo analysis. Eur. Surg. 34(2), 137–142 (2002)CrossRefGoogle Scholar
  11. 11.
    Cubison, T.C.S., Pape, S.A., Jeffery, S.L.A.: Dermal preservation using the Versajet® hydrosurgery system for debridement of paediatric burns. Burns 32, 714–720 (2006)CrossRefGoogle Scholar
  12. 12.
    Keiner, D., et al.: Water jet dissection in neurosurgery: an update after 208 procedures with special reference to surgical technique and complications. Neurosurgery 67(2), 342–354 (2010)Google Scholar
  13. 13.
    Abdou, G.: Analysis of velocity control of waterjets for waterjet machining. In: Waterjet Cutting West. Society of Manufacturing Engineers, Los Angeles (1989)Google Scholar
  14. 14.
    Raghavan, R., Arya, P., Arya, P., China, S.: Abdominal incisions and sutures in obstetrics and gynaecology. Obstet. Gynaecol. 16, 13–18 (2014)Google Scholar
  15. 15.
    Akkus, O., Oguz, A., Uzunlulu, M., Kizilgul, M.: Evaluation of skin and subcutaneous adipose tissue thickness for optimal insulin injection. Diabetes Metab. 3(8) (2012)Google Scholar
  16. 16.
    Jansen, L.H., Rottier, P.B.: Some mechanical properties of human abdominal skin measured on excised strips. Dermatology 117(2), 65–83 (1958)CrossRefGoogle Scholar
  17. 17.
    Ritter, J.: The Modern-day C-section. Surg. Technol. 159–167Google Scholar
  18. 18.
  19. 19.
    WardJet Homepage. Accessed 31 Mar 2018

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.New Jersey Institute of TechnologyNewarkUSA

Personalised recommendations