Advertisement

Hand Gesture Recognition with Leap Motion

  • Lin Feng
  • Youchen Du
  • Shenglan LiuEmail author
  • Li Xu
  • Jie Wu
  • Hong Qiao
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 880)

Abstract

Hand gesture is a natural way for people to communicate, it plays an important role in Human-Computer Interaction (HCI). Nowadays, many developers build HCI applications on the top of hand gesture recognition, but how to get more accurate when recognizing hand gestures still have a long way to go. The recent introduction of depth cameras like Leap Motion Controller (LMC) allows researchers to exploit the depth information to recognize hand gesture more robustly. This paper proposes a novel hand gesture recognition system with LMC for hand gesture recognition. Histogram of Oriented Gradient (HOG) feature is extracted from Leap Motion binarized and undistorted sensor images. We feed these features into a multi-class Support Vector Machine (SVM) classifier to recognize performed gesture. The results show that our model is much more accurate than previous work.

Keywords

Hand gesture recognition Support Vector Machine (SVM) Histogram of Oriented Gradient (HOG) Leap motion 

Notes

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant 61627808, 91648205, 61602082, and 61672130. This work was also supported in part by the development of science and technology of guangdong province special fund project Grants 2016B090910001 and Open Program of State Key Laboratory of Software Architecture (Item number SKLSAOP1701).

References

  1. 1.
    Rautaray, S.S., Agrawal, A.: Vision based hand gesture recognition for human computer interaction: a survey. Artif. Intell. Rev. 43(1), 1–54 (2015)CrossRefGoogle Scholar
  2. 2.
    Ohn-Bar, E., Trivedi, M.M.: Hand gesture recognition in real time for automotive interfaces: a multimodal vision-based approach and evaluations. IEEE Trans. Intell. Transp. Syst. 15(6), 2368–2377 (2014)CrossRefGoogle Scholar
  3. 3.
    Wan, C., Yao, A., Van Gool, L.: Hand pose estimation from local surface normals. In: European Conference on Computer Vision, pp. 554–569. Springer (2016)Google Scholar
  4. 4.
    Chaudhary, A., Raheja, J.L., Das, K., Raheja, S.: Intelligent approaches to interact with machines using hand gesture recognition in natural way: a survey. arXiv preprint arXiv:1303.2292 (2013)
  5. 5.
    Freeman, W.T., Tanaka, K.-i., Ohta, J., Kyuma, K.: Computer vision for computer games. In: Proceedings of the Second International Conference on Automatic Face and Gesture Recognition, pp. 100–105. IEEE (1996)Google Scholar
  6. 6.
    Ren, Z., Yuan, J., Meng, J., Zhang, Z.: Robust part-based hand gesture recognition using kinect sensor. IEEE Trans. Multimed. 15(5), 1110–1120 (2013)CrossRefGoogle Scholar
  7. 7.
    Suarez, J., Murphy, R.R.: Hand gesture recognition with depth images: a review. In: RO-MAN, 2012 IEEE, pp. 411–417. IEEE (2012)Google Scholar
  8. 8.
    Suryanarayan, P., Subramanian, A., Mandalapu, D.: Dynamic hand pose recognition using depth data. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 3105–3108. IEEE (2010)Google Scholar
  9. 9.
    Dominio, F., Donadeo, M., Zanuttigh, P.: Combining multiple depth-based descriptors for hand gesture recognition. Pattern Recognit. Lett. 50, 101–111 (2014)CrossRefGoogle Scholar
  10. 10.
    Yao, Y., Yun, F.: Contour model-based hand-gesture recognition using the kinect sensor. IEEE Trans. Circuits Syst. Video Technol. 24(11), 1935–1944 (2014)CrossRefGoogle Scholar
  11. 11.
    Chen, Z.-h., Kim, J.-T., Liang, J., Zhang, J., Yuan, Y.-B.: Real-time hand gesture recognition using finger segmentation. Sci. World J. 2014 (2014)Google Scholar
  12. 12.
    Feng, K.-p., Yuan, F.: Static hand gesture recognition based on hog characters and support vector machines. In: 2013 2nd International Symposium on Instrumentation and Measurement, Sensor Network and Automation (IMSNA), pp. 936–938. IEEE (2013)Google Scholar
  13. 13.
    Weichert, F., Bachmann, D., Rudak, B., Fisseler, D.: Analysis of the accuracy and robustness of the leap motion controller. Sensors 13(5), 6380–6393 (2013)CrossRefGoogle Scholar
  14. 14.
    Ameur, S., Khalifa, A.B., Bouhlel, M.S.: A comprehensive leap motion database for hand gesture recognition. In: 2017 International Conference on Information and Digital Technologies (IDT), pp. 514–519. IEEE (2017)Google Scholar
  15. 15.
    Wei, L., Tong, Z., Chu, J.: Dynamic hand gesture recognition with leap motion controller. IEEE Signal Process. Lett. 23(9), 1188–1192 (2016)CrossRefGoogle Scholar
  16. 16.
    Marin, G., Dominio, F., Zanuttigh, P.: Hand gesture recognition with leap motion and kinect devices. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 1565–1569. IEEE (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lin Feng
    • 1
  • Youchen Du
    • 1
  • Shenglan Liu
    • 1
    Email author
  • Li Xu
    • 2
  • Jie Wu
    • 1
  • Hong Qiao
    • 3
  1. 1.Dalian University of TechnologyDalianChina
  2. 2.Neusoft Co. Ltd.ShenyangChina
  3. 3.Chinese Academy of SciencesBeijingChina

Personalised recommendations