Advertisement

Real-Time Air Pollution Monitoring Systems Using Wireless Sensor Networks Connected in a Cloud-Computing, Wrapped up Web Services

  • Byron Guanochanga
  • Rolando Cachipuendo
  • Walter FuertesEmail author
  • Santiago Salvador
  • Diego S. Benítez
  • Theofilos Toulkeridis
  • Jenny Torres
  • César Villacís
  • Freddy Tapia
  • Fausto Meneses
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 880)

Abstract

Air pollution continues to grow at an alarming rate, decreasing the quality of life around the world. As part of preventive measures, this paper presents the design and implementation of a secure and low-cost real-time air pollution monitoring system. In such sense, a three-layer architecture system was implemented. The first layer contains sensors connected to an Arduino platform towards the data processing node (Raspberry’s Pi), which through a wireless network sends messages, using the Message Queuing Telemetry Transport (MQTT) protocol. As a failback method, strings are stored within the data processing nodes within flat files, and sent via SSH File Transfer Protocol (SFTP) as a restore operation in case the MQTT message protocol fails. The application layer consists of a server published in the cloud infrastructure having an MQTT Broker service, which performs the gateway functions of the messages sent from the sensor layer. Information is then published within a control panel using the NODE-RED service, which allowed to draw communication flows and the use of the received information and its posterior storage in a No SQL database named “MongoDB”. Furthermore, a RESTFUL WEB service was shared in order to transmit the information for a posterior analysis. The client layer can be accessed from a Web browser, a PC or smartphone. The results demonstrate that the proposed message architecture is able to translate JSON strings sent by the Arduino-based sensor Nodes and the Raspberry Pi gateway node, information about several types of air contaminants have been effectively visualized using web services.

Keywords

Air pollution IoT IaaS WSN Web services 

Notes

Acknowledgment

The authors would like to thank the financial support of the Ecuadorian Corporation for the Development of Research and the Academy (RED CEDIA) in the development of this work, under Project Grant CEPRA-XI-2017-13.

References

  1. 1.
    World Health Organization. Ambient air pollution: A global assessment of exposure and burden of disease (2016)Google Scholar
  2. 2.
    Zhi-gang, H., Cai-hui, C.: The application of Zigbee based wireless sensor network and GIS in the air pollution monitoring. In: 2009 International Conference on Environmental Science and Information Application Technology, Wuhan, pp. 546–549 (2009).  https://doi.org/10.1109/ESIAT.2009.192
  3. 3.
    Banghong, X., Yang, L., Honglei, Z., Junfeng, L.: Application design of wire-less sensor networks in environmental pollution monitoring. Comput. Measur. Control 2, 003 (2009)Google Scholar
  4. 4.
    Postolache, O.A., Dias Pereira, J.M., Silva Girao, P.M.B.: Smart sensors network for air quality monitoring applications. IEEE Trans. Instrum. Measur. 58(9), 3253–3262 (2009).  https://doi.org/10.1109/TIM.2009.2022372CrossRefGoogle Scholar
  5. 5.
    Eren, H., Al-Ghamdi, A., Luo, J.: Application of Zigbee for pollution monitoring caused by automobile exhaust gases. In: 2009 IEEE Sensors Applications Symposium, New Orleans, LA, pp. 164–168 (2009).  https://doi.org/10.1109/SAS.2009.4801799
  6. 6.
    Bader, S., Anneken, M., Goldbeck, M., Oelmann, B.: SAQnet: experiences from the design of an air pollution monitoring system based on off-the-shelf equipment. In: 2011 Seventh International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Adelaide, SA, pp. 389–394 (2011).  https://doi.org/10.1109/ISSNIP.2011.6146632
  7. 7.
    Liu, J.H., Chen, Y.F., Lin, T.S., Lain, D.W., Wen, T.H., Sun, C.H., Jiang, J.A.: Developed urban air quality monitoring system based on wireless sensor networks. In: 2011 Fifth International Conference on Sensing Technology, Palmerston North, pp. 549–554 (2011).  https://doi.org/10.1109/ICSensT.2011.6137040
  8. 8.
    Zhou, G., Chen, Y.: The research of carbon dioxide gas monitoring platform based on the wireless sensor networks. In: 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), Deng Leng, pp. 7402–7405 (2011).  https://doi.org/10.1109/AIMSEC.2011.6010423
  9. 9.
    Yan, Z., Eberle, J., Aberer, K.: OptiMoS: optimal sensing for mobile sensors. In: 2012 IEEE 13th International Conference on Mobile Data Management, Bengaluru, Karnataka, pp. 105–114 (2012).  https://doi.org/10.1109/MDM.2012.43
  10. 10.
    Mao, X., Miao, X., He, Y., Li, X.Y., Liu, Y.: CitySee: urban CO2 monitoring with sensors. In: 2012 Proceedings IEEE INFOCOM, Orlando, FL, pp. 1611–1619 (2012).  https://doi.org/10.1109/INFCOM.2012.6195530
  11. 11.
    Wang, C.H., Huang, Y.K., Zheng, X.Y., Lin, T.S., Chuang, C.L., Jiang, J.A.: A self sustainable air quality monitoring system using WSN. In: 2012 Fifth IEEE International Conference on Service-Oriented Computing and Applications (SOCA), Taipei, pp. 1–6 (2012).  https://doi.org/10.1109/SOCA.2012.6449427
  12. 12.
    Devarakonda, S., Sevusu, P., Liu, H., Liu, R., Iftode, L., Nath, B.: Real-time air quality monitoring through mobile sensing in metropolitan areas. In: Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing, p. 15, August 2013.  https://doi.org/10.1145/2505821.2505834
  13. 13.
    Kadri, A., Yaacoub, E., Mushtaha, M., Abu-Dayya, A.: Wireless sensor network for real-time air pollution monitoring. In: 2013 1st International Conference on Communications, Signal Processing, and their Applications (ICCSPA), Sharjah, pp. 1–5 (2013).  https://doi.org/10.1109/ICCSPA.2013.6487323
  14. 14.
    Kelly, S.D.T., Suryadevara, N.K., Mukhopadhyay, S.C.: Towards the Implementation of IoT for environmental condition monitoring in homes. IEEE Sens. J. 13(10), 3846–3853 (2013).  https://doi.org/10.1109/JSEN.2013.2263379CrossRefGoogle Scholar
  15. 15.
    Fuertes, W., Carrera, D., Villacís, C., Toulkeridis, T., Galárraga, F., Torres, J., Aules, H.: Distributed system as internet of things for a new low-cost, air pollution wireless monitoring on real time. In: IEEE/ACM 19th International Symposium on Distributed Simulation and Real Time Applications (DS-RT), Chengdu, China, pp. 58–67 (2015).  https://doi.org/10.1109/DS-RT.2015.28
  16. 16.
    Mansour, S., Nasser, N., Karim, L., Ali, A.: Wireless sensor network-based air quality monitoring system. In: 2014 International Conference on Computing, Networking and Communications (ICNC), Honolulu, HI, pp. 545–550 (2014).  https://doi.org/10.1109/ICCNC.2014.6785394
  17. 17.
    Kim, J.Y., Chu, C.H., Shin, S.M.: ISSAQ: an integrated sensing systems for real-time indoor air quality monitoring. IEEE Sens. J. 14(12), 4230–4244 (2014).  https://doi.org/10.1109/JSEN.2014.2359832CrossRefGoogle Scholar
  18. 18.
    Abraham, S., Li, X.: A cost-effective wireless sensor network system for indoor air quality monitoring applications. Procedia Comput. Sci. 34, 165–171 (2014).  https://doi.org/10.1016/j.procs.2014.07.090CrossRefGoogle Scholar
  19. 19.
    Ferdoush, S., Li, X.: Wireless sensor network system design using Raspberry Pi and Arduino for environmental monitoring applications. Procedia Comput. Sci. 34, 103–110 (2014).  https://doi.org/10.1016/j.procs.2014.07.059CrossRefGoogle Scholar
  20. 20.
    Liu, S., Xia, C., Zhao, Z.: A low-power real-time air quality monitoring system using LPWAN based on LoRa. In: 2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Hangzhou, pp. 379–381 (2016).  https://doi.org/10.1109/ICSICT.2016.7998927
  21. 21.
    Sugiarto, B., Sustika, R.: Data classification for air quality on wireless sensor network monitoring system using decision tree algorithm. In: 2016 2nd International Conference on Science and Technology-Computer (ICST), Yogyakarta, pp. 172–176 (2016).  https://doi.org/10.1109/ICSTC.2016.7877369
  22. 22.
    Pieri, T., Michaelides, M.P.: Air pollution monitoring in lemesos using a wireless sensor network. In: 2016 18th Mediterranean Electrotechnical Conference (MELE-CON), Lemesos, pp. 1–6 (2016).  https://doi.org/10.1109/MELCON.2016.7495468
  23. 23.
    Boubrima, A., Bechkit, W., Rivano, H.: Optimal WSN deployment models for air pollution monitoring. IEEE Trans. Wirel. Commun. 16(5), 2723–2735 (2017).  https://doi.org/10.1109/TWC.2017.2658601CrossRefGoogle Scholar
  24. 24.
    Pavani, M., Rao, P.T.: Real time pollution monitoring using Wireless Sensor Networks. In: 2016 IEEE 7th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, pp. 1–6 (2016).  https://doi.org/10.1109/IEMCON.2016.7746315
  25. 25.
    Pavani, M., Rao, P.T.: Urban air pollution monitoring using wireless sensor networks: a comprehensive review. Int. J. Commun. Netw. Inf. Secur. (IJCNIS) 9(3) (2017)Google Scholar
  26. 26.
    Hojaiji, H., Kalantarian, H., Bui, A.A.T., King, C.E., Sarrafzadeh, M.: Temperature and humidity calibration of a low-cost wireless dust sensor for real-time monitoring. In: 2017 IEEE Sensors Applications Symposium (SAS), Glassboro, NJ, pp. 1–6 (2017).  https://doi.org/10.1109/SAS.2017.7894056
  27. 27.
    Jaladi, A.R., Khithani, K., Pawar, P., Malvi, K., Sahoo, G.: Environmental monitoring using Wireless Sensor Networks (WSN) based on IOT. Int. Res. J. Eng. Technol. (IRJET) 4, 1371–1378 (2017)Google Scholar
  28. 28.
    Sivamani, S., Choi, J., Bae, K., Ko, H., Cho, Y.: A smart service model in greenhouse environment using event-based security based on wireless sensor network. Concurrency Comput. Pract. Exp. 30, 1–11 (2018).  https://doi.org/10.1002/cpe.4240CrossRefGoogle Scholar
  29. 29.
    Yadav, M., Sethi, P., Juneja, D., Chauhan, N.: An agent-based solution to energy sink-hole problem in flat wireless sensor networks. In: Next-Generation Networks, vol. 638, pp. 255–262. Springer, Singapore (2018).  https://doi.org/10.1007/978-981-10-6005-2-27
  30. 30.
    Aznoli, F., Navimipour, N.J.: Deployment strategies in the wireless sensor networks: systematic literature review, classification, and current trends. Wirel. Pers. Commun. 95, 819–846 (2017).  https://doi.org/10.1007/s11277-016-3800-0CrossRefGoogle Scholar
  31. 31.
    Xu, Y., Liu, F.: Application of wireless sensor network in water quality monitoring. In: 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), Guangzhou, pp. 368–371 (2017).  https://doi.org/10.1109/CSE-EUC.2017.254
  32. 32.
    Yu, J., Wang, W., Yin, H., Jiao, G., Lin, Z.: Design of real time monitoring system for rural drinking water based on wireless sensor network. In: 2017 International Conference on Computer Network, Electronic and Automation (ICCNEA), Xi’an, pp. 281–284 (2017).  https://doi.org/10.1109/ICCNEA.2017.102
  33. 33.
    Yang, J., Zhou, J., Lv, Z., Wei, W., Song, H.: A real-time monitoring system of industry carbon monoxide based on wireless sensor networks. Sensors 15(11), 29535–29546 (2015)CrossRefGoogle Scholar
  34. 34.
    Nikhade, S.G.: Wireless sensor network system using Raspberry Pi and Zigbee for environmental monitoring applications. In: 2015 International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM), pp. 376–381 (2015)Google Scholar
  35. 35.
    Delamo, M., Felici-Castell, S., Pérez-Solano, J.J., Foster, A.: Designing an open source maintenance-free environmental monitoring application for wireless sensor networks. J. Syst. Softw. 103, 238–247 (2015)CrossRefGoogle Scholar
  36. 36.
    Moltchanov, S., Levy, I., Etzion, Y., Lerner, U., Broday, D.M., Fishbain, B.: On the feasibility of measuring urban air pollution by wireless distributed sensor networks. Sci. Total Environ. 502, 537–547 (2015)CrossRefGoogle Scholar
  37. 37.
    Chen, Z., Hu, C., Liao, J., Liu, S.: Protocol architecture for wireless body area network based on nRF24L01. In: 2008 IEEE International Conference on Automation and Logistics, Qingdao, pp. 3050–3054 (2008).  https://doi.org/10.1109/ICAL.2008.4636702
  38. 38.
    Constantin, S., Toulkeridis, T., Moldovan, O.T., Villacis, M., Addison, A.: Caves and karst of Ecuador - state-of-the-art and research perspectives. Physical Geography in press (2018).  https://doi.org/10.1080/02723646.2018.1461496

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Byron Guanochanga
    • 1
  • Rolando Cachipuendo
    • 1
  • Walter Fuertes
    • 1
    Email author
  • Santiago Salvador
    • 1
  • Diego S. Benítez
    • 2
  • Theofilos Toulkeridis
    • 1
  • Jenny Torres
    • 3
  • César Villacís
    • 1
  • Freddy Tapia
    • 1
  • Fausto Meneses
    • 1
  1. 1.Universidad de las Fuerzas Armadas ESPESangolquíEcuador
  2. 2.Universidad San Francisco de Quito USFQQuitoEcuador
  3. 3.Escuela Politécnica NacionalQuitoEcuador

Personalised recommendations