Advertisement

A Resource Allocation Scheme for Multi-user MmWave Vehicle-to-Infrastructure Communication

  • Ramanathan SubramanianEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 881)

Abstract

Millimeter wave (mmWave) communications is increasingly seen as a means to meet the communication constraints demanded by the emerging Intelligent Transportation Systems (ITSs) applications. In this paper, a novel directional MAC protocol is designed that encompasses a resource allocation strategy unique to the mmWave Vehicle-to-Infrastructure (V2I) network in an urban setting. We specifically consider a network where each Base Station (BS), equipped with hybrid beamforming antenna arrays, concurrently serves multiple vehicles. Using models for the coherence bandwidth and coherence time specific to the mmWave vehicular channel, a robust resource allocation scheme is provided that the BS utilizes towards efficient multiuser scheduling. The novelty is in the multi-users scenario, time-frequency resource allocation designed specifically for the mmWave channel. To evaluate the network, a channel simulator is entirely built in MATLAB to carry out the link layer simulations.

Keywords

5G Vehicle-to-Infrastructure (V2I) communications Directional MAC protocols Millimeter wave (mmWave) antenna arrays Hybrid beamforming User mobility 

References

  1. 1.
    Choi, J., Va, V., Gonzalez-Prelcic, N., Daniels, R., Bhat, C.R., Heath, R.W.: Millimeter-wave vehicular communication to support massive automotive sensing. IEEE Commun. Mag. 54(12), 160–167 (2016)CrossRefGoogle Scholar
  2. 2.
    Uhlemann, E.: Connected-vehicles applications are emerging [connected vehicles]. IEEE Veh. Technol. Mag. 11(1), 25–96 (2016)CrossRefGoogle Scholar
  3. 3.
    Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S., Kolter, J.Z., Langer, D., Pink, O., Pratt, V., Sokolsky, M., Stanek, G., Stavens, D., Teichman, A., Werling, M., Thrun, S.: Towards fully autonomous driving: systems and algorithms. In: 2011 IEEE Intelligent Vehicles Symposium (IV), pp. 163–168, June 2011Google Scholar
  4. 4.
    Kenney, J.B.: Dedicated short-range communications (DSRC) standards in the United States. Proc. IEEE 99(7), 1162–1182 (2011)CrossRefGoogle Scholar
  5. 5.
    Araniti, G., Campolo, C., Condoluci, M., Iera, A., Molinaro, A.: LTE for vehicular networking: a survey. IEEE Commun. Mag. 51(5), 148–157 (2013)CrossRefGoogle Scholar
  6. 6.
    Nitsche, T., Cordeiro, C., Flores, A.B., Knightly, E.W., Perahia, E., Widmer, J.C.: IEEE 802.11ad: directional 60 GHz communication for multi-Gigabit-per-second Wi-Fi [invited paper]. IEEE Commun. Mag. 52(12), 132–141 (2014)CrossRefGoogle Scholar
  7. 7.
    Rangan, S., Rappaport, T.S., Erkip, E.: Millimeter-wave cellular wireless networks: potentials and challenges. Proc. IEEE 102(3), 366–385 (2014)CrossRefGoogle Scholar
  8. 8.
    Akdeniz, M.R., Liu, Y., Samimi, M.K., Sun, S., Rangan, S., Rappaport, T.S., Erkip, E.: Millimeter wave channel modeling and cellular capacity evaluation. IEEE J. Sel. Areas Commun. 32(6), 1164–1179 (2014)CrossRefGoogle Scholar
  9. 9.
    Maltsev, A., Sadri, A., Pudeyev, A., Bolotin, I.: Highly directional steerable antennas: high-gain antennas supporting user mobility or beam switching for reconfigurable backhauling. IEEE Veh. Technol. Mag. 11(1), 32–39 (2016)CrossRefGoogle Scholar
  10. 10.
    Gonzalez Prelcic, N., Ali, A., Va, V., Heath Jr., R.W.: Millimeter wave communication with out-of-band information. ArXiv e-prints, March 2017CrossRefGoogle Scholar
  11. 11.
    Shokri-Ghadikolaei, H., Fischione, C., Fodor, G., Popovski, P., Zorzi, M.: Millimeter wave cellular networks: a MAC layer perspective. IEEE Trans. Commun. 63(10), 3437–3458 (2015)CrossRefGoogle Scholar
  12. 12.
    Rappaport, T., Heath, R., Daniels, R., Murdock, J.: Millimeter wave wireless communications. In: Communication Engineering and Emerging Technologies. Prentice Hall (2014). https://books.google.com/books?id=_Tt_BAAAQBAJ
  13. 13.
    Haneda, K., Tian, L., Zheng, Y., Asplund, H., Li, J., Wang, Y., Steer, D., Li, C., Balercia, T., Lee, S., Kim, Y., Ghosh, A., Thomas, T.A., Nakamura, T., Kakishima, Y., Imai, T., Papadopoulos, H.C., Rappaport, T.S., Maccartney Jr., G.R., Samimi, M.K., Sun, S., Koymen, O.H., Hur, S., Park, J., Zhang, J.C., Mellios, E., Molisch, A.F., Ghassamzadah, S.S., Ghosh, A.: 5G 3GPP-like Channel Models for Outdoor Urban Microcellular and Macrocellular Environments, CoRR, vol. abs/1602.07533 (2016). http://arxiv.org/abs/1602.07533
  14. 14.
    Andrews, J.G., Buzzi, S., Choi, W., Hanly, S.V., Lozano, A., Soong, A.C.K., Zhang, J.C.: What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)CrossRefGoogle Scholar
  15. 15.
    Simic, L., Perpinias, N., Petrova, M.: 60 GHz outdoor urban measurement study of the feasibility of multi-Gbps mmwave cellular networks. In: IEEE Conference on Computer Communications Workshops, INFOCOM Workshops 2016, San Francisco, CA, USA, 10–14 April 2016, pp. 554–559 (2016).  https://doi.org/10.1109/INFCOMW.2016.7562138
  16. 16.
    Mehrpouyan, H., Khanzadi, M.R., Matthaiou, M., Sayeed, A.M., Schober, R., Hua, Y.: Improving bandwidth efficiency in E-band communication systems. IEEE Commun. Mag. 52(3), 121–128 (2014)CrossRefGoogle Scholar
  17. 17.
    Stuber, G.L.: Principles of Mobile Communication, 2nd edn. Kluwer Academic Publishers, Norwell (2001)zbMATHGoogle Scholar
  18. 18.
    Dadgarpour, A., Zarghooni, B., Virdee, B.S., Denidni, T.A.: One- and two-dimensional beam-switching antenna for millimeterwave mimo applications. IEEE Trans. Antennas Propag. 64(2), 564–573 (2016)CrossRefGoogle Scholar
  19. 19.
    Va, V., Zhang, X., Heath, R.W.: Beam switching for millimeter wave communication to support high speed trains. In: 2015 IEEE 82nd Vehicular Technology Conference (VTC Fall), pp. 1–5, September 2015Google Scholar
  20. 20.
    Alkhateeb, A., Ayach, O.E., Leus, G., Heath, R.W.: Hybrid precoding for millimeter wave cellular systems with partial channel knowledge. In: Information Theory and Applications Workshop (ITA), pp. 1–5, February 2013Google Scholar
  21. 21.
    Heath, R.W., Gonzlez-Prelcic, N., Rangan, S., Roh, W., Sayeed, A.M.: An overview of signal processing techniques for millimeter wave mimo systems. IEEE J. Sel. Top. Signal Process. 10(3), 436–453 (2016)CrossRefGoogle Scholar
  22. 22.
    Alkhateeb, A., Leus, G., Heath, R.W.: Limited feedback hybrid precoding for multi-user millimeter wave systems. IEEE Trans. Wirel. Commun. 14(11), 6481–6494 (2015)CrossRefGoogle Scholar
  23. 23.
    Andrews, J.G., Bai, T., Kulkarni, M.N., Alkhateeb, A., Gupta, A.K., Heath Jr., R.W.: Modeling and analyzing millimeter wave cellular systems, CoRR, vol. abs/1605.04283 (2016). http://arxiv.org/abs/1605.04283
  24. 24.
    Barati, C.N., Hosseini, S.A., Rangan, S., Liu, P., Korakis, T., Panwar, S.S., Rappaport, T.S.: Directional cell discovery in millimeter wave cellular networks. IEEE Trans. Wirel. Commun. 14(12), 6664–6678 (2015)CrossRefGoogle Scholar
  25. 25.
    Shokri-Ghadikolaei, H., Fischione, C., Popovski, P., Zorzi, M.: Design aspects of short-range millimeter-wave networks: a MAC layer perspective. IEEE Netw. 30(3), 88–96 (2016)CrossRefGoogle Scholar
  26. 26.
    Va, V., Choi, J., Heath, R.: The impact of beamwidth on temporal channel variation in vehicular channels and its implications. IEEE Trans. Veh. Technol. PP(99), 1 (2016)Google Scholar
  27. 27.
    Hammoudeh, A., Scammell, D.: Measurements and characterisation of RMS delay spread and coherence bandwidth in indoor radio channel at millimetre waves. In: 7th IEEE High Frequency Postgraduate Student Colloquium, p. 7 (2002)Google Scholar
  28. 28.
    Sanchez, M.G., Hammoudeh, A., Grindrod, E., Siamarou, A.: Coherence bandwidth measurements and analysis for millimetre-wave mobile communications. In: IEE National Conference on Antennas and Propagation, pp. 89-92, April 1999Google Scholar
  29. 29.
    Hmimy, H.H., Gupta, S.C.: Statistical model of delay spread and coherence bandwidth for wide-band pcs at millimeter-waves in an urban mobile radio environment. In: IEEE International Conference in Communications, ICC 96, Conference Record, Converging Technologies for Tomorrows Applications, vol. 2, pp. 1232–1235, Jun 1996Google Scholar
  30. 30.
    Samimi, M.K., Rappaport, T.S.: Local multipath model parameters for generating 5G millimeter-wave 3G-like channel impulse response. In: 2016 10th European Conference on Antennas and Propagation (EuCAP), pp. 1–5, April 2016Google Scholar
  31. 31.
    MacCartney, G.R., Samimi, M.K., Rappaport, T.S.: Exploiting directionality for millimeter-wave wireless system improvement. In: 2015 IEEE International Conference on Communications (ICC), pp. 2416–2422, June 2015Google Scholar
  32. 32.
    Kim, J.H., Yoon, Y.K., Chong, Y.J., Hong, H.J.: Millimeterwave delay spread measurement and simulation at LoS urban lowrise environments. In: 2015 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1194-1196, October 2015Google Scholar
  33. 33.
    Thomas, H.J., Cole, R.S., Siqueira, G.L.: An experimental study of the propagation of 55 GHz millimeter waves in an urban mobile radio environment. IEEE Trans. Veh. Technol. 43(1), 140–146 (1994)CrossRefGoogle Scholar
  34. 34.
    Jylanki, J.: A thousand ways to pack the bin a practical approach to two-dimensional rectangle bin packing (2010). https://github.com/juj/RectangleBinPack
  35. 35.
    Evolved Universal Terrestrial Radio Access: Further advancements for E-UTRA physical layer aspects, 3GPP Technical Specification TR, vol. 36 (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Cisco Systems, Inc.San JoseUSA

Personalised recommendations