Advertisement

Technological and Regulatory Developments for Electromagnetic Transmission into the Millimeter Wave and Terahertz Wave Spectrum

  • Salim HannaEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 881)

Abstract

Electromagnetic transmission into the millimeter wave (mmWave) and terahertz wave (THzWave) spectrum is undergoing many developments. This paper addresses technological and regulatory developments of electromagnetic transmission into the frequency range 86–3000 GHz relevant to commercial communication systems and networks. The paper reviews technological advancements based on transmission trials, propagation measurements, and semiconductor electronics and circuit component developments. It also reviews technology trends and addresses the suitability of current enabling technologies for the development of mmWave and THzWave communication systems such as 6G and beyond. In addition, this paper presents steps taken by spectrum regulators and standardization bodies (e.g., ITU-R, FCC, IEEE) to further the identification and allocation of frequency bands for future use by radiocommunication services. Technology maturity has caused spectrum regulators to focus on commercial service expansion into certain frequency bands. The ITU-R is currently studying sharing and compatibility between the land-mobile, fixed and passive services applications in 275–450 GHz. The upcoming ITU-R World Radio Conference 2019 is to decide on the expansion of the land mobile and fixed services applications into 275–450 GHz. The full exploitation of the mmWave/THzWave spectrum by commercial communication systems awaits the development of innovative technologies to compensate for atmospheric attenuation and propagation losses, enhance mobility, and design and implement high-performance energy-and-cost-efficient compact devices.

Keywords

Future communication systems Millimeter wave and terahertz wave communications 6G and beyond Enabling technologies Spectrum regulations 

References

  1. 1.
    ITU-R: Resolution 238. In: Final Acts of World Radio Conference 2015, Geneva, Switzerland (2015)Google Scholar
  2. 2.
    Song, H.-J., Nagatsuma, T.: Present and future of terahertz communications. IEEE Trans. Terahertz Sci. Technol. 1(1), 256–263 (2011)CrossRefGoogle Scholar
  3. 3.
    Petrov, V., et al.: Terahertz band communications: Applications, research challenges, and standardization activities. In: International Congress on Ultra Modern Telecommunication and Control Systems and Workshops (ICUMT), pp. 183–190 (2016)Google Scholar
  4. 4.
    Niu, Y., et al.: A survey of millimeter wave communications (mmWave) for 5G: opportunities and challenges. Wirel. Netw. J. 21(9), 2657–2676 (2015)CrossRefGoogle Scholar
  5. 5.
    Piesiewicz, R., Kleine-Ostmann, T., Krumbholz, N., Mittleman, D., Koch, M., Schoebel, J., Kürner, T.: Short-range ultra-broadband terahertz communications: concepts and perspectives. IEEE Antennas Propag. Mag. 49(6), 24–39 (2007)CrossRefGoogle Scholar
  6. 6.
    Akyildiz, I.F., Jornet, J.M., Han, C.: Terahertz band: next frontier for wireless communications. Phys. Comm. J. 12, 16–32 (2014)CrossRefGoogle Scholar
  7. 7.
    Hirata, A., et al.: Transmission trial of television broadcast materials using 120-GHz-band wireless link. NTT Tech. Rev. 7 (2009)Google Scholar
  8. 8.
    Hirata A., et al.: 5.8-km 10-Gbps data transmission over a 120-GHz-band wireless link. In: 2010 IEEE International Conference on Wireless Information Technology and Systems (ICWITS), pp. 1–4 (2010)Google Scholar
  9. 9.
    Takeuchi, J., Hirata, A., Takahashi, H., Kukutsu, N.: 20-Gbit/s unidirectional wireless system using polarization multiplexing for 12-ch HDTV signal transmission. In: Proceedings of APMC 2012, Kaohsiung, Taiwan (2012)Google Scholar
  10. 10.
    Jastrow, C., Münter, K., Piesiewicz, R., Kürner, T., Koch, M., Kleine-Ostmann, T.: 300 GHz transmission system. Electron. Lett. 44(3), 213–214 (2008)CrossRefGoogle Scholar
  11. 11.
    Priebe, S., et al.: Channel and propagation measurements at 300 GHz. IEEE Trans. Antennas Propag. 59(5), 1688–1698 (2011)CrossRefGoogle Scholar
  12. 12.
    Yang, Y., Shutler, A., Grischhowsky, D.: Measurement of the transmission of the atmosphere from 0.2 to 2 THz. Opt. Express J. 19(9), 8830–8839 (2011)CrossRefGoogle Scholar
  13. 13.
    Hirata A., et al.: Multiplexed transmission of uncompressed HDTV signals using 120-GHz-band millimeter-wave wireless communications system. NTT Tech. Rev. 4(3) (2006)Google Scholar
  14. 14.
    Moeller, L., Federici J.F., Su, K.: THz wireless communications: 2.5 Gb/s error-free transmission at 625 GHz using a narrow-bandwidth 1 mW THz source. In: Tech, Dig. URSI General Assembly and Scientific Symposium, Turkey (2011)Google Scholar
  15. 15.
    Wu, Q., et al.: A 21 km 5Gbps real time wireless communication system at 0.14 THz. In: 42 International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2017), Cancun, Mexico (2017)Google Scholar
  16. 16.
    Lai R., et al.: Sub 50 nm InP HEMT device with FMAX greater than 1 THz. In: Proceedings of IEEE International Electron Devices Meeting, pp. 609–611 (2007)Google Scholar
  17. 17.
    Kim, D.-H., et al.: 50-nm E-mode In0.7 Ga0.3As PHEMTs on 100-mm InP substrate with fmax >1 THz. In: Proceedings of IEEE International Electron Devices Meeting - IEDM, pp. 30.6.1–30.6.4 (2010)Google Scholar
  18. 18.
    Suzuki, S., Asada, M., Teranishi, A., Sugiyama, H., Yokoyama, H.: Fundamental oscillation of resonant tunneling diodes above 1 THz at room temperature. Appl. Phys. Lett. 97, 242102–242103 (2010)CrossRefGoogle Scholar
  19. 19.
    Kallfass, I., Massler, H., Leuther, A., Tessmann, A., Schlechtweg, M.: A 210 GHz dual-gate FET mixer MMIC with >2 dB conversion gain high LO-to-RF isolation and low LO-drive requirements. IEEE Microw. Wirel. Compon. Lett. 18(8), 557–559 (2008)CrossRefGoogle Scholar
  20. 20.
    Radisic, V., et al.: Demonstration of a 311-GHz fundamental oscillator using InP HBT technology. IEEE Trans. Microw. Theory Tech. 55(11), 2329–2335 (2007)CrossRefGoogle Scholar
  21. 21.
    Radisic, V., Leong, K.M., Mei, X., Sarkozy, S., Yoshida, W., Liu, P., Uyeda, J., Lai, R., Deal, W.R.: A 50 mW 220 GHz power amplifier module. In: International Microwave Symposium Digest (IMS) (2010)Google Scholar
  22. 22.
    Deal, W.R., et al.: Demonstration of a 0.48 THz amplifier module using InP HEMT transistors. IEEE Microw. Wirel. Compon. Lett. 20(5), 289–291 (2010)CrossRefGoogle Scholar
  23. 23.
    Seok, E., et al.: A 410 GHz CMOS push-push oscillator with an on-chip patch antenna. In: Proceedings of International Solid-State Circuits Conference - ISSCC, pp. 472–473 (2008)Google Scholar
  24. 24.
    ITU-R: Recommendation ITU-R RA.314 - Preferred frequency bands for radio astronomical measurements (2003)Google Scholar
  25. 25.
    ITU-R: Report ITU-R RA.2189 - Sharing between the radio astronomy service and active services in the frequency range 275–3 000 GHz (2010)Google Scholar
  26. 26.
    ITU-R: Report ITU-R RS.2194 - Passive bands of scientific interest to EESS/SRS from 275 to 3 000 GHz (2010)Google Scholar
  27. 27.
    ITU-R: Radio Regulations. Volume 1, Edition of 2016 (2016)Google Scholar
  28. 28.
    ITU-R: Footnote No. 5.565: Radio Regulations. Final Acts of World Radio Conference 2012, Geneva, Switzerland (2012)Google Scholar
  29. 29.
    FCC FNPRM: Use of spectrum bands above 24 GHz for mobile radio services; proposed rules. Federal Register, vol. 81, no. 164 (2016)Google Scholar
  30. 30.
    FCC Report and Order: Allocations and service rules for the 71-76 GHz, 81-86 GHz and 92-95 GHz bands. FCC 03-248, WT Docket No. 02-146, RM-10288 (2003)Google Scholar
  31. 31.
    FCC NPRM and Order: Spectrum Horizons. ET Docket No. 18-21, RM-11795 (2018)Google Scholar
  32. 32.
    Ofcom: Fixed wireless spectrum strategy, London, UK (2016)Google Scholar
  33. 33.
    ETSI latest news: New Industry Specification Group on millimetre wave transmission at ETSI (2014)Google Scholar
  34. 34.
    The European table of frequency allocations and applications in the frequency range 8.3 kHz to 3000 GHz. ERC Report 25 (2017)Google Scholar
  35. 35.
    IEEE: IEEE 802.15.3d Terahertz Interest Group. http://www.ieee802.org/15/pub/TG3d/index_IGthz.html
  36. 36.
    ITU-R: Resolution 767- Studies towards an identification for use by administrations for land-mobile and fixed services applications operating in the frequency range 275-450 GHz. In: Final acts of World Radio Conference 2015, Geneva, Switzerland (2015)Google Scholar
  37. 37.
    ITU-R: Report ITU-R F.2416 - Technical and operational characteristics and applications of the point-to-point fixed service applications operating in the frequency band 275-450 GHz (2017)Google Scholar
  38. 38.
    ITU-R: Report ITU-R M.2417 - Technical and operational characteristics and applications of land-mobile service applications in the frequency range 275–450 GHz (2017)Google Scholar
  39. 39.
    ITU-R: Resolution 809 - Agenda for the 2019 World Radiocommunication Conference. In: Final acts of World Radio Conference 2015, Geneva, Switzerland (2015)Google Scholar
  40. 40.
    ITU-R: Recommendation ITU-R P.676-11 - Attenuation by atmospheric gases (2016)Google Scholar
  41. 41.
    Siles, G.A., Riera, J.M., Garcia-del-Pino, P.: Atmospheric attenuation in wireless communication systems at millimeter and THz frequencies. IEEE Antennas Propag. 57(1), 48–61 (2015)CrossRefGoogle Scholar
  42. 42.
    ITU-R: Recommendation ITU-R P.840 - Attenuation due to clouds and fog (2017)Google Scholar
  43. 43.
    Pang, X., et al.: 100 Gbit/s hybrid optical fiber-wireless link in the W-band (75-110 GHz). Optic. Express J. 19(25), 24944–24949 (2011)CrossRefGoogle Scholar
  44. 44.
    ITU-R: Report ITU-R SM.2352 - Technology trends of active services in the frequency range 275–3 000 GHz (2015)Google Scholar
  45. 45.
    Radisic, V., et al.: Power amplification at 0.65 THz using InP HEMETs. IEEE Trans. Microw. Theory Technol. 60(3), 724–729 (2012)CrossRefGoogle Scholar
  46. 46.
    Kallfass, I., et al.: All active MMIC-based wireless communication at 220 GHz. IEEE Trans. Terahertz, Science and Technology (2011)Google Scholar
  47. 47.
    Kallfass, I., et al.: Multi-Gigabit high-range fixed wireless link at high milimeterwave carrier frequencies. In: IEEE Radio and Wireless Symposium – RWS 2017 (2017)Google Scholar
  48. 48.
    NICT Press release: Terahertz wireless could make spaceborne satellite links as fast as fiber-optic links. National Institute of Information and Communications Technology, Japan (2017). https://www.nict.go.jp/en/press/2017/02/06-1.html
  49. 49.
    Fujitsu Press release: The world’s-first compact transceiver for terahertz wireless communication using the 300-GHz band - with transmission rate of several-dozen gigabits per second - was developed and experimentally demonstrated high-speed data transmission. Tokyo, Japan (2016). http://www.fujitsu.com/global/about/resources/news/press-releases/2016/0526-01.html
  50. 50.
    Northrop Grumman NewsRoom: Northrop Grumman wins Terahertz contract (2009). http://news.northropgrumman.com/news/releases/northrop-grumman-wins-terahertz-contract
  51. 51.
    Samsung: 5G vision. White paper (2015)Google Scholar
  52. 52.
    ITU-R: Report M.2320 - Future technology trends of terrestrial IMT-systems. ITU-R (2014)Google Scholar
  53. 53.
    Rüddenklau U., et al.: mmWave semiconductor industry technologies: status and evolution. ETSI white paper No. 15 (2016)Google Scholar
  54. 54.
    Abadal, S., et al.: Graphene-enabled wireless communication for massive multicore architectures. IEEE Commun. Magazine 51, 137–143 (2013)CrossRefGoogle Scholar
  55. 55.
    Chen, P.-Y., Alu, A.: All graphene terahertz analog nanodevices and nanocircuits. In: Proceedings of 7th European Conference on Antennas Propagation (EuCAP), pp. 697–698 (2013)Google Scholar
  56. 56.
    Vardhan, P., et al.: Massive-MIMO-past, present and future: a review. Indian J. Sci. Technol. 9(48), 1–13 (2016)CrossRefGoogle Scholar
  57. 57.
    Eberspacher, J., Vogel, H.-J., Bettstetter, C.: GSM - Switching, Services and Protocols. Wiley, Chichester (2001)CrossRefGoogle Scholar
  58. 58.
    Lin, Y.-B.: Performance modeling for mobile telephone networks. IEEE Netw. 11, 63–67 (1997)CrossRefGoogle Scholar
  59. 59.
    Khan, F., Pi, Z., Rajagopal, S.: Millimeter-wave mobile broadband with large scale spatial processing for 5G mobile communication. In: Proceedings of 50th Annual Allerton Conference Communication Control Computing (Allerton), pp. 1517–1523 (2012)Google Scholar
  60. 60.
    Pi, Z., Khan, F.: An introduction to millimeter-wave mobile broadband systems. IEEE Commun. Mag. 49(6), 101–107 (2011)CrossRefGoogle Scholar
  61. 61.
    Choi, S.W., et al.: Mobile hotspot network system for high-speed railway communications using millimeter waves. ETRI J. 33(6), 1042–1051 (2016)Google Scholar
  62. 62.
    Tomas, J.P.: SK Telecom, Ericsson and BMW carry out 5G trial for connected car. RCR Wireless News (2017). http://www.rcrwireless.com/20170208/connected-cars-2/5g-trial-connected-car-tag23
  63. 63.
    Mumtaz, S., Jornet, J.M., Aulin, J.: Terahertz communication for vehicular networks. IEEE Trans. Veh. Technol. 66(7), 5617–5625 (2017)CrossRefGoogle Scholar
  64. 64.
    ITU-R: Preliminary draft new report ITU-R SM.[275-450GHz_SHARING] - Sharing and compatibility studies between land-mobile, fixed, and passive services in the frequency range 275-450 GHz. Annex 3 to Working Party 1A Chairman’s Report (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Communications Research Centre CanadaInnovation, Science and Economic Development CanadaOttawaCanada

Personalised recommendations