Vehicle Communication Using Secrecy Capacity

  • Na-Young AhnEmail author
  • Donghoon Lee
  • Seong-Jun Oh
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 881)


We address secure vehicle communication using secrecy capacity. In particular, we research the relationship between secrecy capacity and various types of parameters that determine secrecy capacity in the vehicular wireless network. For example, we examine the relationship between vehicle speed and secrecy capacity, the relationship between the response time and secrecy capacity of an autonomous vehicle, and the relationship between transmission power and secrecy capacity. In particular, the autonomous vehicle has set the system modeling on the assumption that the speed of the vehicle is related to the safety distance. We propose new vehicle communication to maintain a certain level of secrecy capacity according to various parameters. As a result, we can expect safer communication security of autonomous vehicles in 5G communications.


V2V communication Physical layer security Secrecy capacity Compressive sensing encryption Security distance ITS Vehicular network 


  1. 1.
    Sun, L., Du, Q.: Secure Data Dissemination for Intelligent Transportation Systems. Secure and Trustworthy Transportation Cyber-Physical Systems, Springer Briefs in Computer Science, pp. 99–140 (2017)Google Scholar
  2. 2.
    Saki, F., Sen, S.: A survey of attacks and detection mechanisms on intelligent transportation systems: VANETs and IoV. Ad Hoc Networks 61, 33–50 (2017)CrossRefGoogle Scholar
  3. 3.
    Camacho, F., Cárdenas, C., Muñoz, D.: Emerging technologies and research challenges for intelligent transportation systems: 5G, HetNets, and SDN. Int. J. Interact. Des. Manu. (2017). SpringerGoogle Scholar
  4. 4.
    Whyte, W., Weimerskirch, A., Kumar, V., Hehn, T.: A security credential management system for V2V communications. In: 2013 IEEE Vehicular Networking Conference (VNC) (2013)Google Scholar
  5. 5.
    Lei, A., Cruickshank, H., Cao, Y., Asuquo, P., Ogah, C.P.A., Sun, Z.: Blockchain-based dynamic key management for heterogeneous intelligent transportation systems. IEEE Internet Things J. 4(6), December 2017CrossRefGoogle Scholar
  6. 6.
    Liang, L., Peng, H., Li, G.Y., (Sherman) Shen, X.: Vehicular communications: a physical layer perspective. IEEE Trans. Veh. Technol. (2017)Google Scholar
  7. 7.
    Han, D., Bai, B., Chen, W.: Secure V2V communications via relays: resource allocation and performance analysis. IEEE Wirel. Commun. Lett. 6(3), June 2017CrossRefGoogle Scholar
  8. 8.
    Eltayeb, M.E., Choi, J., Al-Naffouri, T.Y., Heath Jr., R.W.: Enhancing secrecy with multi-antenna transmission in millimeter wave vehicular communication systems. IEEE Trans. Veh. Technol. (2017)Google Scholar
  9. 9.
    Mullakkal-Babu, F.A., Wang, M., van Arem, B., Happee, R.: Design and analysis of full range adaptive cruise control with integrated collision avoidance strategy. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC) (2016)Google Scholar
  10. 10.
    Duan, S., Zhao, J.: A model based on hierarchical safety distance algorithm for ACC control mode switching strategy. In: 2017 2nd International Conference on Image, Vision and Computing (2017)Google Scholar
  11. 11.
    Wang, G., Zhao, L., Hao, Y., Zhu, J.: Design of active safety warning system for hazardous chemical transportation vehicle. Information Technology and Intelligent Transportation System, Springer, pp. 11-21 (2017)Google Scholar
  12. 12.
    Zhao, D., Xia, Z., Zhang, Q.: Model-free optimal control based intelligent cruise control with hardware-in-the-loop demonstration. IEEE Comput. Intell. Mag., May 2017Google Scholar
  13. 13.
    Bloch, M., Barros, J., Rodrigues, M.R.D., McLaughlin, S.W.: Wireless information-theoretic security. IEEE Trans. Inf. Theory 54(6), 2515–2534 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Zou, Y., Zhu, J., Wang, X., Leung, V.C.M.: Improving physical-layer security in wireless communications using diversity techniques. IEEE Network, January/February 2015CrossRefGoogle Scholar
  15. 15.
    Chen, X., Ng, D.W.K., Gerstacker, W.H., Chen, H.-H.: A survey on multiple-antenna techniques for physical layer security. IEEE Commun. Surv. Tutorials 19(2), Second Quarter (2017)CrossRefGoogle Scholar
  16. 16.
    Wu1, Y., Liu, W., Wang, S., Guo, W., Chu, X: Network coding in Device-to-device (D2D) communications underlaying cellular networks. In: IEEE ICC 2015–Wireless Communication Symposium (2015)Google Scholar
  17. 17.
    Jameel, F., Haider, M.A.A., Butt, A.A.: Performance analysis of VANETs under Rayleigh, Rician, Nakagami and Weibull Fading. In: 2017 International Conference on Communication, Computing and Digital Systems (C-CODE) (2017)Google Scholar
  18. 18.
    Inaltekin, H., Chiang, M., Vincent Poor, H., Wicker, S.B.: On unbounded path-loss models: effects of singularity on wireless network performance. IEEE J. Sel. Areas Commun. 27(7), September 2009CrossRefGoogle Scholar
  19. 19.
    Zhang, A., Lin, X.: Security-aware and privacy-preserving D2D communications in 5G. IEEE Network, July/August 2017CrossRefGoogle Scholar
  20. 20.
    Zhang, A., Wang, L., Ye, X., Zhou, L.: Secure content delivery over device-to-device communications underlaying cellular networks. Wirel. Commun. Mob. Comput. 16, 2449–2462 (2016)CrossRefGoogle Scholar
  21. 21.
    Iwata, S., Ohtsuki, T., Kam, P.-T.: A lower bound on secrecy capacity for MIMO wiretap channel aided by a cooperative jammer with channel estimation error. IEEE Access 5, 4636–4645 (2017)CrossRefGoogle Scholar
  22. 22.
    Liang, Y., Vincent Poor, H.: Shamai (Shitz), S.: Secure communication over fading channels. IEEE Trans. Inf. Theory 54(6), 2453–2469 (2008)CrossRefGoogle Scholar
  23. 23.
    Vincent Poora, H., Schaeferb, R.F.: Wireless physical layer security. PNAS 114(1), 19–26 (2017)CrossRefGoogle Scholar
  24. 24.
    Ge, X., Cheng, H., Mao, G., Yang, Y., Tu, S.: Vehicular communications for 5G Cooperative small-cell networks. IEEE Trans. Veh. Technol. 65(10), 13 (2016)Google Scholar
  25. 25.
    Gong, S., Xing, C., Fei, Z., Kuang, J.: Cooperative beamforming design for physical-layer security of Multi-Hop MIMO communications. Science China Information Sciences (2015)Google Scholar
  26. 26.
    Xu, D., Ren, P., Du, Q., Sun, L.: Hybrid secure beamforming and vehicle selection using hierarchical agglomerative clustering for C-RAN-based vehicle-to-infrastructure communications in vehicular cyber-physical systems. Int. J. Distrib. Sensor Networks (2016)Google Scholar
  27. 27.
    Amin, T.: Performance Analysis of Secondary Users in Heterogeneous Cognitive Radio Network. Georgia Southern University Digital Commons@Georgia Southern (2016)Google Scholar
  28. 28.
    Choi, J.: Channel-Aware Randomized Encryption and Channel Estimation Attack. IEEE Access 5 (2017)CrossRefGoogle Scholar
  29. 29.
    Choi, J.: Secure transmissions via compressive sensing in multicarrier systems. IEEE Signal Process. Lett. 23(10), October 2016CrossRefGoogle Scholar
  30. 30.
    Yu, N.Y.: Indistinguishability of compressed encryption with circulant matrices for wireless security. IEEE Sig. Process. Lett. 24(2), February 2017Google Scholar
  31. 31.
    Barceló-Lladó, J.E., Morell, A., Seco-Granados, G.: Amplify-and-forward compressed sensing as a physical-layer secrecy solution in wireless sensor networks. IEEE Trans. Inf. Forens. Secur. 9(5), May 2014Google Scholar
  32. 32.
    Athira, V., Sudhish, N., George, D.P.P.: A novel encryption method based on compressive sensing. In: 2013 International Multi-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s) (2013)Google Scholar
  33. 33.
    Rachlin, Y., Baron, D.: The secrecy of compressed sensing measurements. In: 2008 46th Annual Allerton Conference on Communication, Control, and Computing (2008)Google Scholar
  34. 34.
    Dautov, R., Tsouri, G.R.: Establishing secure measurement matrix for compressed sensing using wireless physical layer security. In: 2013 International Conference on Computing, Networking and Communications, Communications and Information Security Symposium (2013)Google Scholar
  35. 35.
    Chang, S., Li, J., Fu, X., Zhang, L.: Energy harvesting for physical layer security in cooperative networks based on compressed sensing. Entropy 19(420), 2017 (2017)Google Scholar
  36. 36.
    Guo, J., Song, B., He, Y., Richard, F.: A survey on compressed sensing in vehicular infotainment systems. IEEE Commun. Surv. Tutor. 19(4), Fourth Quarter 2017CrossRefGoogle Scholar
  37. 37.
    Zhang, J., Duong, T.Q., Woods, R., Marshall, A.: Securing wireless communications of the internet of things from the physical layer, an overview. Entropy 19(420), 2017 (2017)Google Scholar
  38. 38.
    Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), April 2006Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Graduate School for Information SecurityKorea UniversitySeoulKorea
  2. 2.CIST and Graduate School for Information SecurityKorea UniversitySeoulKorea

Personalised recommendations