Advertisement

Computing Exposition Coherence Across Learning Resources

  • Chaitali DiwanEmail author
  • Srinath Srinivasa
  • Prasad Ram
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11230)

Abstract

With increasing numbers of open learning resources on the web that are created and published independently by different sources, stringing together coherent learning pathways is a challenging task. Coherence in this context means the semantic “smoothness” of transition from one learning resource to the next, i.e., the change in topic distribution and exposition styles between consecutive resources is minimal, and the overall sequence of resources together provides a good learning experience. Towards this end, we present a model to compute exposition coherence between a pair of learning resources, based on representing exposition styles in the form of a random walk. It is based on an underlying hypothesis about exposition styles modelled as a sequence of topical entailments. Evaluation of the presented model on the dataset of learning pathways curated by the teachers of the educational platform Gooru.org, show promising results.

Keywords

Graph kernels Co-occurrence graphs Random walk Word embedding Technology enhanced learning Semantic coherence Open corpus educational resources 

Notes

Acknowledgements

The authors would like to acknowledge and thank the contributions of the project associates P. Srinivasan, Karan Kumar Gupta, and Sanket Kutumbe.

References

  1. 1.
    Agrawal, R., Chakraborty, S., Gollapudi, S., Kannan, A., Kenthapadi, K.: Empowering authors to diagnose comprehension burden in textbooks. In: Proceedings of the 18th ACM SIGKDD International Cconference on Knowledge Discovery and Data Mining, pp. 967–975. ACM (2012)Google Scholar
  2. 2.
    Arnett, T.: Connecting ed & tech: partnering to drive student outcomes. Clayton Christensen Institute for Disruptive Innovation (2016)Google Scholar
  3. 3.
    Brusilovsky, P., Henze, N.: Open corpus adaptive educational hypermedia. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 671–696. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72079-9_22CrossRefGoogle Scholar
  4. 4.
    Changuel, S., Labroche, N., Bouchon-Meunier, B.: Resources sequencing using automatic prerequisite-outcome annotation. ACM Trans. Intell. Syst. Technol. (TIST) 6(1), 6 (2015)Google Scholar
  5. 5.
    Chen, C.M.: Intelligent web-based learning system with personalized learning path guidance. Comput. Educ. 51(2), 787–814 (2008)CrossRefGoogle Scholar
  6. 6.
    Hsieh, T.C., Wang, T.I.: A mining-based approach on discovering courses pattern for constructing suitable learning path. Expert Syst. Appl. 37(6), 4156–4167 (2010)CrossRefGoogle Scholar
  7. 7.
    Huang, L., Milne, D., Frank, E., Witten, I.H.: Learning a concept-based document similarity measure. J. Assoc. Inf. Sci. Technol. 63(8), 1593–1608 (2012)CrossRefGoogle Scholar
  8. 8.
    Hummel, H.G., et al.: Combining social-based and information-based approaches for personalised recommendation on sequencing learning activities. Int. J. Learn. Technol. 3(2), 152–168 (2007)CrossRefGoogle Scholar
  9. 9.
    Islam, A., Inkpen, D.: Semantic text similarity using corpus-based word similarity and string similarity. ACM Trans. Knowl. Discov. Data (TKDD) 2(2), 10 (2008)Google Scholar
  10. 10.
    Knauf, R., Sakurai, Y., Takada, K., Tsuruta, S.: Personalizing learning processes by data mining. In: 2010 IEEE 10th International Conference on Advanced Learning Technologies (ICALT), pp. 488–492. IEEE (2010)Google Scholar
  11. 11.
    Kondor, R.I., Lafferty, J.: Diffusion kernels on graphs and other discrete input spaces. ICML 2, 315–322 (2002)Google Scholar
  12. 12.
    Kongkachandra, R., Chamnongthai, K.: Using linguistics information for improving the sentence-based semantic relatedness measurement. In: International Symposium on Communications and Information Technologies ISCIT 2007, pp. 1372–1376. IEEE (2007)Google Scholar
  13. 13.
    Krieger, K., Schneider, J., Nywelt, C., Rösner, D.: Creating semantic fingerprints for web documents. In: Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics, p. 11. ACM (2015)Google Scholar
  14. 14.
    Labutov, I., Lipson, H.: Web as a textbook: curating targeted learning paths through the heterogeneous learning resources on the web. In: EDM, pp. 110–118 (2016)Google Scholar
  15. 15.
    Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: International Conference on Machine Learning, pp. 1188–1196 (2014)Google Scholar
  16. 16.
    Liu, B., Zhang, T., Niu, D., Lin, J., Lai, K., Xu, Y.: Matching long text documents via graph convolutional networks. arXiv preprint arXiv:1802.07459 (2018)
  17. 17.
    Mann, W.C., Thompson, S.A.: Rhetorical structure theory: toward a functional theory of text organization. Text-Interdiscip. J. Stud. Discourse 8(3), 243–281 (1988)CrossRefGoogle Scholar
  18. 18.
    Manrique, R.: Towards automatic learning content sequence via linked open data. In: Proceedings of the International Conference on Web Intelligence, pp. 1230–1233. ACM (2017)Google Scholar
  19. 19.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)Google Scholar
  20. 20.
    Mueller, J., Thyagarajan, A.: Siamese recurrent architectures for learning sentence similarity. In: AAAI, pp. 2786–2792 (2016)Google Scholar
  21. 21.
    Ni, Y., et al.: Semantic documents relatedness using concept graph representation. In: Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, pp. 635–644. ACM (2016)Google Scholar
  22. 22.
    Paas, F., Renkl, A., Sweller, J.: Cognitive load theory and instructional design: recent developments. Educ. Psychol. 38(1), 1–4 (2003)CrossRefGoogle Scholar
  23. 23.
    Paul, C., Rettinger, A., Mogadala, A., Knoblock, C.A., Szekely, P.: Efficient graph-based document similarity. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 334–349. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-34129-3_21CrossRefGoogle Scholar
  24. 24.
    Pelánek, R.: Measuring similarity of educational items using data on learners’ performance (2017)Google Scholar
  25. 25.
    Ponza, M., Ferragina, P., Chakrabarti, S.: A two-stage framework for computing entity relatedness in wikipedia. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 1867–1876. ACM (2017)Google Scholar
  26. 26.
    Rachakonda, A.R., Srinivasa, S., Kulkarni, S., Srinivasan, M.: A generic framework and methodology for extracting semantics from co-occurrences. Data Knowl. Eng. 92, 39–59 (2014)CrossRefGoogle Scholar
  27. 27.
    Shen, L., Shen, R.: Learning content recommendation service based-on simple sequencing specification. In: Liu, W., Shi, Y., Li, Q. (eds.) ICWL 2004. LNCS, vol. 3143, pp. 363–370. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-27859-7_47CrossRefGoogle Scholar
  28. 28.
    Siehndel, P., Kawase, R., Nunes, B.P., Herder, E.: Towards automatic building of learning pathways. In: WEBIST, no. 2, pp. 270–277 (2014)Google Scholar
  29. 29.
    Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.: Graph kernels. J. Mach. Learn. Res. 11(Apr), 1201–1242 (2010)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Wong, L.H., Looi, C.K.: Adaptable learning pathway generation with ant colony optimization. J. Educ. Technol. Soc. 12(3), 309 (2009)Google Scholar
  31. 31.
    Yeh, E., Ramage, D., Manning, C.D., Agirre, E., Soroa, A.: WikiWalk: random walks on wikipedia for semantic relatedness. In: Proceedings of the 2009 Workshop on Graph-Based Methods for Natural Language Processing, pp. 41–49. Association for Computational Linguistics (2009)Google Scholar
  32. 32.
    Yu, Z., Nakamura, Y., Jang, S., Kajita, S., Mase, K.: Ontology-based semantic recommendation for context-aware e-learning. In: Indulska, J., Ma, J., Yang, L.T., Ungerer, T., Cao, J. (eds.) UIC 2007. LNCS, vol. 4611, pp. 898–907. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73549-6_88CrossRefGoogle Scholar
  33. 33.
    Yueh-Min, H., Tien-Chi, H., Wang, K.T., Hwang, W.Y.: A markov-based recommendation model for exploring the transfer of learning on the web. J. Educ. Technol. Soc. 12(2), 144 (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.IIIT BangaloreBengaluruIndia
  2. 2.Gooru IncRedwood CityUSA

Personalised recommendations