Skip to main content

Laboratory-Scale Microgrid System for Control of Power Distribution in Local Energy Networks – Part II: Implementation and Case Study

  • Chapter
  • First Online:
Smart Microgrids

Abstract

In this chapter, we provide the detailed implementation of the proposed microgrid framework in part I. As a case study, a droop-based load sharing algorithm with the capability of controlling the active and reactive power have been implemented. Several load sharing scenarios have been studied to verify the capability of the suggested prototype in performance evaluation and verification of different control strategies in microgrid systems. The performed experiments confirm the capacity of the proposed structure in microgrid research and development (R&D), as well as education.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. S. Ustun, C. Ozansoy, and A. Zayegh, “Recent developments in microgrids and example cases around the world—A review,” Renew. Sustain. Energy Rev., vol. 15, no. 8, pp. 4030–4041, Oct 2011.

    Article  Google Scholar 

  2. C. E. Commission, “Certs microgrid laboratory test bed,” Energy, vol. 26, no. February, pp. 1–8, 2009.

    Google Scholar 

  3. L. Meng, A. Luna, E. Diaz, B. Sun, T. Dragicevic, M. Savaghebi, J. Vasquez, J. Guerrero, and M. Graells, “Flexible System Integration and Advanced Hierarchical Control Architectures in the Microgrid Research Laboratory of Aalborg University,” IEEE Trans. Ind. Appl., vol. 52, no. 2, pp. 1–1, 2015.

    Article  Google Scholar 

  4. B. Zhao, X. Zhang, and J. Chen, “Integrated microgrid laboratory system,” IEEE Trans. Power Syst., vol. 27, no. 4, pp. 2175–2185, 2012.

    Article  Google Scholar 

  5. V. Salehi, A. Mohamed, A. Mazloomzadeh, and O. A. Mohammed, “Laboratory-based smart power system, part I: Design and system development,” IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 1394–1404, 2012.

    Article  Google Scholar 

  6. C. Wang, X. Yang, Z. Wu, Y. Che, L. Guo, S. Zhang, and Y. Liu, “A Highly Integrated and Reconfigurable Microgrid Testbed with Hybrid Distributed Energy Sources,” IEEE Trans. Smart Grid, vol. 7, no. 1, pp. 451–459, 2014.

    Article  Google Scholar 

  7. S. S. Thale, R. G. Wandhare, and V. Agarwal, “A Novel Reconfigurable Microgrid Architecture With Renewable Energy Sources and Storage,” IEEE Trans. Ind. Appl., vol. 51, no. 2, pp. 1805–1816, 2015.

    Article  Google Scholar 

  8. G. Turner, J. P. Kelley, C. L. Storm, D. A. Wetz, and W. J. Lee, “Design and active control of a microgrid testbed,” IEEE Trans. Smart Grid, vol. 6, no. 1, pp. 73–81, 2015.

    Article  Google Scholar 

  9. F. Guo, L. Herrera, M. Alsolami, H. Li, P. Xu, X. Lu, A. Lang, J. Wang, and Z. Long, “Design and development of a reconfigurable hybrid Microgrid testbed,” in 2013 IEEE Energy Conversion Congress and Exposition, 2013, pp. 1350–1356.

    Chapter  Google Scholar 

  10. A. Vukojevic, S. Laval, and J. Handley, “An integrated utility microgrid test site ecosystem optimized by an open interoperable distributed intelligence platform,” in 2015 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), 2015, pp. 1–5.

    Google Scholar 

  11. S. Bracco, F. Delfino, F. Pampararo, M. Robba, and M. Rossi, “The University of Genoa smart polygeneration microgrid test-bed facility: The overall system, the technologies and the research challenges,” Renew. Sustain. Energy Rev., vol. 18, pp. 442–459, Feb 2013.

    Article  Google Scholar 

  12. D. De and S. K. Das, “A wireless smart grid testbed in lab,” IEEE Wirel. Commun., vol. 19, no. 3, pp. 58–64, Jun 2012.

    Article  Google Scholar 

  13. “DC Power Supply Products - High Voltage and High Current|Magna-Power.” [Online]. Available: http://www.magna-power.com/products. [Accessed: 18-May-2016].

  14. “XDC 6000 Watt and 12000 Watt Series Digital Programmable DC Power Supply.” [Online]. Available: http://www.programmablepower.com/products/XDC/downloads/XDC_6kW_12kW_User_Guide_XDOP-01XN.pdf. [Accessed: 18-May-2016].

  15. “Programmable AC Power Source Model 61511/61512/61611/61612.” [Online]. Available: http://www.chromausa.com/pdf/Br-61611+61612-acsource-022011.pdf. [Accessed: 18-May-2016].

  16. A. Koran and K. Sano, “Design of a Photovoltaic Simulator With a Novel Reference Signal Generator and Two-Stage LC Output Filter,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1331–1338, May 2010.

    Article  Google Scholar 

  17. Qingrong Zeng, Pinggang Song, and Liuchen Chang, “A photovoltaic simulator based on DC chopper,” in IEEE CCECE2002. Canadian Conference on Electrical and Computer Engineering. Conference Proceedings (Cat. No.02CH37373), 2002, vol. 1, pp. 257–261.

    Chapter  Google Scholar 

  18. M. Park and I.-K. Yu, “A Novel Real-Time Simulation Technique of Photovoltaic Generation Systems Using RTDS,” IEEE Trans. Energy Convers., vol. 19, no. 1, pp. 164–169, Mar 2004.

    Article  Google Scholar 

  19. E. Koutroulis, K. Kalaitzakis, and V. Tzitzilonis, “Development of an FPGA-based System for Real-Time Simulation of Photovoltaic Modules,” in Seventeenth IEEE International Workshop on Rapid System Prototyping (RSP’06), 2006, pp. 200–208.

    Chapter  Google Scholar 

  20. M. G. Villalva, J. R. Gazoli, and E. R. Filho, “Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1198–1208, May 2009.

    Article  Google Scholar 

  21. S. Farag, C. Lerman, S. Lineykin, and A. Kuperman, “Off-the-shelf-Power-Supply-based Battery-Supercapacitor Emulator for Charger Functionality Testing,” IEEE Trans. Transp. Electrif., vol. PP, no. 99, pp. 1–1, 2016.

    Google Scholar 

  22. T. Kim and W. Qiao, “A Hybrid Battery Model Capable of Capturing Dynamic Circuit Characteristics and Nonlinear Capacity Effects,” IEEE Trans. Energy Convers., vol. 26, no. 4, pp. 1172–1180, Dec 2011.

    Article  Google Scholar 

  23. K. Nguyen-Duy, A. Knott, and M. A. E. Andersen, “High Dynamic Performance Nonlinear Source Emulator,” IEEE Trans. Power Electron., vol. 31, no. 3, pp. 2562–2574, Mar 2016.

    Article  Google Scholar 

  24. L. H.-W. L. J.-G. K. S.-H. S. Eun-Kyung, “Implementation of Fuel Cell Dynamic Simulator,” in 37th IEEE Power Electronics Specialists Conference, 2006, pp. 1–5.

    Google Scholar 

  25. linkchain. t. co., “Chroma ATE Inc.|English,” Jan. 2012.

    Google Scholar 

  26. “SEMIKRON Online Shop|SEMITEACH B6U+E1CIF+B6CI|Buy Power Modules online!” [Online]. Available: http://shop.semikron.com/en/Products-and-Shop/Product-Groups/STACKs/SEMITEACH/SEMITEACH-B6U-E1CIF-B6CI.html. [Accessed: 19-May-2016].

  27. K. Jalili and S. Bernet, “Design of LCL Filters of Active-Front-End Two-Level Voltage-Source Converters,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1674–1689, May 2009.

    Article  Google Scholar 

  28. A. Reznik, M. G. Simoes, A. Al-Durra, and S. M. Muyeen, “LCL Filter design and performance analysis for grid-interconnected systems,” IEEE Trans. Ind. Appl., vol. 50, no. 2, pp. 1225–1232, 2014.

    Article  Google Scholar 

  29. “Jantzen Audio 1.0mH 18 AWG Air Core Inductor Crossover Coil.” [Online]. Available: http://www.parts-express.com/jantzen-audio-10mh-18-awg-air-core-inductor-crossover-coil%2D%2D255-250. [Accessed: 19-May-2016].

  30. X. Yang, S. P. Carullo, K. Miu, and C. O. Nwankpa, “Reconfigurable Distribution Automation and Control Laboratory: Multiphase, Radial Power Flow Experiment,” IEEE Trans. Power Syst., vol. 20, no. 3, pp. 1207–1214, Aug. 2005.

    Article  Google Scholar 

  31. “PROGRAMMABLE AC&DC ELECTRONIC LOAD MODEL 63800 SERIES.” [Online]. Available: http://www.chromausa.com/pdf/63800-E.pdf. [Accessed: 02-May-2016].

  32. “DS1103 PPC Controller Board Powerful controller board for rapid control prototyping.” [Online]. Available: https://www.dspace.com/shared/data/pdf/2014/DS1103.pdf. [Accessed: 03-May-2016].

  33. “LEM Website - Search.” [Online]. Available: http://www.lem.com/hq/en/component/option,com_catalog/task,displaymodel/id,90.08.19.000.0/. [Accessed: 03-May-2016].

  34. “LEM Website - Search.” [Online]. Available: http://www.lem.com/hq/en/component/option,com_catalog/task,displaymodel/id,90.27.19.000.0/. [Accessed: 03-May-2016].

  35. “NI PCI-6024E (Legacy) - National Instruments.” [Online]. Available: http://sine.ni.com/nips/cds/view/p/lang/en/nid/10968. [Accessed: 04-May-2016].

  36. “LabVIEW System Design Software - National Instruments.” [Online]. Available: http://www.ni.com/labview/. [Accessed: 04-May-2016].

  37. “Software, Drivers, Manuals for Programmable DC Power Supplies | Magna-Power.” [Online]. Available: http://www.magna-power.com/support/download-center. [Accessed: 04-May-2016].

  38. “Chroma ATE chr616xx Power Supply - IEEE 488.2 (GPIB) Driver for LabVIEW - National Instruments.” [Online]. Available: http://sine.ni.com/apps/utf8/niid_web_display.download_page?p_id_guid=E3B19B3E9172659CE034080020E74861. [Accessed: 04-May-2016].

  39. “ControlDesk Next Generation - dSPACE.” [Online]. Available: https://www.dspace.com/en/inc/home/products/sw/experimentandvisualization/controldesk.cfm. [Accessed: 04-May-2016].

  40. T. Dragiˇ and J. M. Guerrero, “DC Microgrids — Part II : A Review of Power Architectures, Applications,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528–3549, 2016.

    Article  Google Scholar 

  41. Mohammadi, Ali, and Sanaz Rabinia. “A comprehensive study of Game Theory applications for smart grids, demand side management programs, and transportation networks.” arXiv preprint arXiv:1804.10712 (2018).

    Google Scholar 

  42. T. C. Green and M. Prodanović, “Control of inverter-based micro-grids,” Electr. Power Syst. Res., vol. 77, no. 9, pp. 1204–1213, Jul 2007.

    Article  Google Scholar 

  43. “IEEE Std 1547.4-2011,” IEEE Std 1547.4-2011. pp. 1–54, 2011.

    Google Scholar 

  44. J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodríguez, “Control of Power Converters in AC Microgrids,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4734–4749, Nov 2012.

    Article  Google Scholar 

  45. P. Piagi and R. H. Lasseter, “Autonomous control of microgrids,” 2006 IEEE Power Eng. Soc. Gen. Meet., no. June, p. 8 pp., 2006.

    Google Scholar 

  46. T. L. Vandoorn, B. Meersman, and L. Vandevelde, “Transition From Islanded to Grid-Connected Mode of Microgrids With Voltage-Based Droop Control,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 2545–2553, Aug. 2013.

    Article  Google Scholar 

  47. “HIGH EFFICIENCY MULTICRYSTAL PHOTOVOLTAIC MODULE.” [Online]. Available: http://www.txspc.com/PDF/KC200GT.pdf.

  48. D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Canizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke, G. A. Jimenez-Estevez, and N. D. Hatziargyriou, “Trends in microgrid control,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1905–1919, 2014.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Nejadpak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahmud, R., Nejadpak, A. (2019). Laboratory-Scale Microgrid System for Control of Power Distribution in Local Energy Networks – Part II: Implementation and Case Study. In: Bahrami, S., Mohammadi, A. (eds) Smart Microgrids. Springer, Cham. https://doi.org/10.1007/978-3-030-02656-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02656-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02655-4

  • Online ISBN: 978-3-030-02656-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics