Skip to main content

Newtonian and Single Layer Potentials for the Stokes System with L Coefficients and the Exterior Dirichlet Problem

  • Chapter
  • First Online:

Part of the book series: Trends in Mathematics ((TM))

Abstract

A mixed variational formulation of some problems in L 2-based Sobolev spaces is used to define the Newtonian and layer potentials for the Stokes system with L coefficients on Lipschitz domains in \({\mathbb R}^3\). Then the solution of the exterior Dirichlet problem for the Stokes system with L coefficients is presented in terms of these potentials and the inverse of the corresponding single layer operator.

Dedicated to Professor H. Begehr on the occasion of his 80th birthday

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The trace operators defined on Sobolev spaces of vector fields on Ω± or \({\mathbb R}^3\) are also denoted by γ ± and γ, respectively.

References

  1. M.S. Agranovich, Sobolev Spaces, Their Generalizations, and Elliptic Problems in Smooth and Lipschitz Domains (Springer, Heidelberg, 2015)

    Book  Google Scholar 

  2. F. Alliot, C. Amrouche, The Stokes problem in \({\mathbb R}^n\): an approach in weighted Sobolev spaces. Math. Models Methods Appl. Sci. 9, 723–754 (1999)

    Article  MathSciNet  Google Scholar 

  3. F. Alliot, C. Amrouche, Weak solutions for the exterior Stokes problem in weighted Sobolev spaces. Math. Methods Appl. Sci. 23, 575–600 (2000)

    Article  MathSciNet  Google Scholar 

  4. C. Amrouche, M. Meslameni, Stokes problem with several types of boundary conditions in an exterior domain. Electron. J. Diff. Equ. 2013(196), 1–28 (2013)

    MathSciNet  MATH  Google Scholar 

  5. C. Amrouche, H.H. Nguyen, L p-weighted theory for Navier-Stokes equations in exterior domains. Commun. Math. Anal. 8, 41–69 (2010)

    MathSciNet  MATH  Google Scholar 

  6. I. Babus̆ka, The finite element method with Lagrangian multipliers. Numer. Math. 20, 179–192 (1973)

    Article  MathSciNet  Google Scholar 

  7. C. Băcuţă, M.E. Hassell, G.C. Hsiao, F-J. Sayas, Boundary integral solvers for an evolutionary exterior Stokes problem. SIAM J. Numer. Anal. 53, 1370–1392 (2015)

    Article  MathSciNet  Google Scholar 

  8. A. Barton, Layer potentials for general linear elliptic systems. Electron. J. Diff. Equ. 2017(309), 1–23 (2017)

    MathSciNet  MATH  Google Scholar 

  9. K. Brewster, D. Mitrea, I. Mitrea, M. Mitrea, Extending Sobolev functions with partially vanishing traces from locally (𝜖, δ)-domains and applications to mixed boundary problems. J. Funct. Anal. 266, 4314–4421 (2014)

    Article  MathSciNet  Google Scholar 

  10. F. Brezzi, On the existence, uniqueness and approximation of saddle points problems arising from Lagrange multipliers. R.A.I.R.O. Anal. Numer. R2, 129–151 (1974)

    Article  MathSciNet  Google Scholar 

  11. F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, vol. 15 (Springer, New York, 1991)

    Google Scholar 

  12. O. Chkadua, S.E. Mikhailov, D. Natroshvili, Analysis of direct boundary-domain integral equations for a mixed BVP with variable coefficient, I: Equivalence and invertibility. J. Integr. Equ. Appl. 21, 499–543 (2009)

    MathSciNet  MATH  Google Scholar 

  13. O. Chkadua, S.E. Mikhailov, D. Natroshvili, Localized boundary-domain singular integral equations based on harmonic parametrix for divergence-form elliptic PDEs with variable matrix coefficients. Integr. Equ. Oper. Theory. 76, 509–547 (2013)

    Article  MathSciNet  Google Scholar 

  14. O. Chkadua, S.E. Mikhailov, D. Natroshvili, Analysis of direct segregated boundary-domain integral equations for variable-coefficient mixed BVPs in exterior domains. Anal. Appl. 11(4), 1350006 (2013)

    Article  MathSciNet  Google Scholar 

  15. J. Choi, K-A. Lee, The Green function for the Stokes system with measurable coefficients. Commun. Pure Appl. Anal. 16, 1989–2022 (2017)

    Article  MathSciNet  Google Scholar 

  16. J. Choi, M. Yang, Fundamental solutions for stationary Stokes systems with measurable coefficients. J. Diff. Equ. 263, 3854–3893 (2017)

    Article  MathSciNet  Google Scholar 

  17. M. Costabel, Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19, 613–626 (1988)

    Article  MathSciNet  Google Scholar 

  18. R. Dautray, J. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Integral Equations and Numerical Methods, vol. 4 (Springer, Berlin, 1990)

    Google Scholar 

  19. M. Dindos̆, M. Mitrea, The stationary Navier-Stokes system in nonsmooth manifolds: the Poisson problem in Lipschitz and C 1 domains. Arch. Ration. Mech. Anal. 174, 1–47 (2004)

    Google Scholar 

  20. A. Ern, J.L. Guermond, Theory and Practice of Finite Elements (Springer, New York, 2004)

    Book  Google Scholar 

  21. E. Fabes, C. Kenig, G. Verchota, The Dirichlet problem for the Stokes system on Lipschitz domains. Duke Math. J. 57, 769–793 (1988)

    Article  MathSciNet  Google Scholar 

  22. E. Fabes, O. Mendez, M. Mitrea, Boundary layers on Sobolev-Besov spaces and Poisson’s equation for the Laplacian in Lipschitz domains. J. Funct. Anal. 159, 323–368 (1998)

    Article  MathSciNet  Google Scholar 

  23. G.P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Steady-State Problems, 2nd edn. (Springer, New York, 2011)

    Google Scholar 

  24. G.N. Gatica, W.L. Wendland, Coupling of mixed finite elements and boundary elements for linear and nonlinear elliptic problems. Appl. Anal. 63, 39–75 (1996)

    Article  MathSciNet  Google Scholar 

  25. V. Girault, P.A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer Series in Comp. Math., vol. 5 (Springer, Berlin, 1986)

    Book  Google Scholar 

  26. V. Girault, A. Sequeira, A well-posed problem for the exterior Stokes equations in two and three dimensions. Arch. Ration. Mech. Anal. 114, 313–333 (1991)

    Article  MathSciNet  Google Scholar 

  27. J. Giroire, Étude de quelques problèmes aux limites extérieurs et résolution par équations intégrales. Thése de Doctorat d’État, Université Pierre-et-Marie-Curie (Paris-VI), 1987

    Google Scholar 

  28. B. Hanouzet, Espaces de Sobolev avec poids – application au probl\(\grave {e}\)me de Dirichlet dans un demi-espace. Rend. Sere. Mat. Univ. Padova. 46, 227–272 (1971)

    Google Scholar 

  29. S. Hofmann, M. Mitrea, A.J. Morris, The method of layer potentials in L p and endpoint spaces for elliptic operators with L coefficients. Proc. Lond. Math. Soc. 111, 681–716 (2015)

    Article  MathSciNet  Google Scholar 

  30. G.C. Hsiao, W.L. Wendland, Boundary Integral Equations (Springer, Heidelberg, 2008)

    Book  Google Scholar 

  31. D.S. Jerison, C. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130, 161–219 (1995)

    Article  MathSciNet  Google Scholar 

  32. M. Kohr, I. Pop, Viscous Incompressible Flow for Low Reynolds Numbers (WIT Press, Southampton, 2004)

    MATH  Google Scholar 

  33. M. Kohr, M. Lanza de Cristoforis, W.L. Wendland, Nonlinear Neumann-transmission problems for Stokes and Brinkman equations on Euclidean Lipschitz domains. Potential Anal. 38, 1123–1171 (2013)

    Article  MathSciNet  Google Scholar 

  34. M. Kohr, M. Lanza de Cristoforis, S.E. Mikhailov, W.L. Wendland, Integral potential method for transmission problem with Lipschitz interface in \({\mathbb R}^3\) for the Stokes and Darcy-Forchheimer-Brinkman PDE systems. Z. Angew. Math. Phys. 67(5), 1–30, 116 (2016)

    Google Scholar 

  35. M. Kohr, M. Lanza de Cristoforis, W.L. Wendland, On the Robin-transmission boundary value problems for the nonlinear Darcy-Forchheimer-Brinkman and Navier-Stokes systems. J. Math. Fluid Mech. 18, 293–329 (2016)

    Article  MathSciNet  Google Scholar 

  36. M. Kohr, S.E. Mikhailov, W.L. Wendland, Transmission problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman systems in Lipschitz domains on compact Riemannian manifolds. J. Math. Fluid Mech. 19, 203–238 (2017)

    Article  MathSciNet  Google Scholar 

  37. J. Lang, O. Méndez, Potential techniques and regularity of boundary value problems in exterior non-smooth domains: regularity in exterior domains. Potential Anal. 24, 385–406 (2006)

    Article  MathSciNet  Google Scholar 

  38. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations (Cambridge University Press, Cambridge, 2000)

    MATH  Google Scholar 

  39. D. Medková, Transmission problem for the Brinkman system. Complex Var. Elliptic Equ. 59, 1664–1678 (2014)

    Article  MathSciNet  Google Scholar 

  40. S.E. Mikhailov, Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains. J. Math. Anal. Appl. 378, 324–342 (2011)

    Article  MathSciNet  Google Scholar 

  41. S.E. Mikhailov, Solution regularity and co-normal derivatives for elliptic systems with non-smooth coefficients on Lipschitz domains. J. Math. Anal. Appl. 400, 48–67 (2013)

    Article  MathSciNet  Google Scholar 

  42. M. Mitrea, M. Wright, Boundary value problems for the Stokes system in arbitrary Lipschitz domains. Astérisque. 344, viii+241 pp. (2012)

    Google Scholar 

  43. M. Mitrea, S. Monniaux, M. Wright, The Stokes operator with Neumann boundary conditions in Lipschitz domains. J. Math. Sci. (New York). 176(3), 409–457 (2011)

    Article  MathSciNet  Google Scholar 

  44. J.-C. Nédélec, Approximation des Équations Intégrales en Mécanique et en Physique. Cours de DEA, 1977

    Google Scholar 

  45. D.A. Nield, A. Bejan, Convection in Porous Media, 3rd edn. (Springer, New York, 2013)

    Book  Google Scholar 

  46. F-J. Sayas, V. Selgas, Variational views of Stokeslets and stresslets. SEMA J 63, 65–90 (2014)

    Article  MathSciNet  Google Scholar 

  47. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators (North-Holland, Amsterdam, 1978)

    MATH  Google Scholar 

  48. W. Varnhorn, The Stokes Equations (Akademie Verlag, Berlin, 1994)

    MATH  Google Scholar 

Download references

Acknowledgements

The research has been supported by the grant EP/M013545/1: “Mathematical Analysis of Boundary-Domain Integral Equations for Nonlinear PDEs” from the EPSRC, UK. Part of this work was done in April/May 2018, when M. Kohr visited the Department of Mathematics of the University of Toronto. She is grateful to the members of this department for their hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang L. Wendland .

Editor information

Editors and Affiliations

Appendix: Mixed Variational Formulations and Their Well-Posedness Property

Appendix: Mixed Variational Formulations and Their Well-Posedness Property

Here we make a brief review of well-posedness results due to Babus̆ka [6] and Brezzi [10] for mixed variational formulations related to bounded bilinear forms in reflexive Banach spaces. We follow [20, Section 2.4], [11], and [25, §4].

Let X and \({\mathcal M}\) be reflexive Banach spaces, and let X and \({\mathcal M}^*\) be their dual spaces. Let , be bounded bilinear forms. Then we consider the following abstract mixed variational formulation.

For f ∈ X , \(g\in {\mathcal M}^{*}\) given, find a pair \((u,p)\in X\times {\mathcal M}\) such that

$$\displaystyle \begin{aligned} \left\{\begin{array}{ll} a(u,v)+b(v,p)&=f(v), \ \ \forall \ v\in X,\\ b(u,q)&=g(q), \ \ \forall \ q\in {\mathcal M}. \end{array} \right. \end{aligned} $$
(1)

Let A : X → X be the bounded linear operator defined by

$$\displaystyle \begin{aligned} \langle Av,w\rangle =a(v,w),\, \forall \, v,w\in X, \end{aligned} $$
(2)

where is the duality pairing of the dual spaces X and X. We also use the notation 〈⋅, ⋅〉 for the duality pairing \(_{{\mathcal M}^{*}}\langle \cdot ,\cdot \rangle _{\mathcal M}\). Let \(B:X\to {\mathcal M}^{*}\) and \(B^{*}:{\mathcal M}\to X^{*}\) be the bounded linear and transpose operators given by

$$\displaystyle \begin{aligned} &\langle Bv,q\rangle =b(v,q),\ \langle v,B^*q\rangle =\langle Bv,q\rangle ,\, \forall \, v\in X,\, \forall \, q\in {\mathcal M}. \end{aligned} $$
(3)

In addition, we consider the spaces

$$\displaystyle \begin{aligned} &V:=\mathrm{{Ker}}\, B=\left\{v\in X: b(v,q)=0,\ \forall \, q\in {\mathcal M}\right\}, \end{aligned} $$
(4)
$$\displaystyle \begin{aligned} &V^{\perp}:=\left\{T\in X^{*}: \langle T,v\rangle =0,\ \forall \, v\in V\right\}. \end{aligned} $$
(5)

Then the following well-posedness result holds (cf., e.g., [20, Theorem 2.34]).

Theorem 1

Let X and \({\mathcal M}\) be reflexive Banach spaces, f  X and \(g\in {\mathcal M}^{*}\) , and \(a(\cdot ,\cdot ):X\times X\to {\mathbb R}\) and \(b(\cdot ,\cdot ):X\times {\mathcal M}\to {\mathbb R}\) be bounded bilinear forms. Let V  be the subspace of X defined by (4). Then the variational problem (1) is well-posed if and only if a(⋅, ⋅) satisfies the conditions

$$\displaystyle \begin{aligned} \left\{\begin{array}{lll} \exists \ \lambda >0\ \mathit{\mbox{ such that }} \ \displaystyle\inf _{u\in V\setminus \{0\}}\sup_{v\in V\setminus \{0\}}\frac{a(u,v)}{\|u\|{}_X\|v\|{}_X}\geq \lambda ,\\ \{v\in V: a(u,v)=0,\ \forall \ u\in V\}=\{0\}, \end{array}\right. \end{aligned} $$
(6)

and b(⋅, ⋅) satisfies the inf-sup (Ladyzhenskaya-Babus̆ka-Brezzi) condition,

$$\displaystyle \begin{aligned} \exists \, \beta >0\ \mathit{\mbox{ such that }} \ \inf _{q\in {\mathcal M}\setminus \{0\}}\sup_{v\in X\setminus \{0\}}\frac{b(v,q)}{\|v\|{}_X\|q\|{}_{\mathcal M}}\geq \beta . \end{aligned} $$
(7)

Moreover, there exists a constant C depending on β, λ and the norm of a(⋅, ⋅), such that the unique solution \((u,p)\in {X}\times {\mathcal M}\) of (1) satisfies the inequality

$$\displaystyle \begin{aligned} {\|u\|{}_{X}+\|p\|{}_{{\mathcal M}}\leq C\left(\|f\|{}_{X^{*}}+\|g\|{}_{{\mathcal M}^{*}}\right).} \end{aligned} $$
(8)

In addition, we have (see [20, Theorem A.56, Remark 2.7], [4, Theorem 2.7]).

Lemma 2

Let \(X,{\mathcal M}\) be reflexive Banach spaces. Let \(b(\cdot ,\cdot ):X\times {\mathcal M}\to {\mathbb R}\) be a bounded bilinear form. Let and be the operators defined by (3), and let . Then the following results are equivalent:

  1. (i)

    There exists a constant β > 0 such that b(⋅, ⋅) satisfies condition (7).

  2. (ii)

    \(B:{X/V}\to {\mathcal M}^{*}\) is an isomorphism and for any

  3. (iii)

    is an isomorphism and for any \(q\in {\mathcal M}.\)

Remark 3

Let X be a reflexive Banach space and V  be a closed subspace of X. If a bounded bilinear form \(a(\cdot ,\cdot ):V\times V\to {\mathbb R}\) is coercive on V , i.e., there exists a constant c a > 0 such that

$$\displaystyle \begin{aligned} a(w,w)\geq c_a\|w\|{}_X^2,\ \forall \, w\in V, \end{aligned} $$
(9)

then the conditions (6) are satisfied as well (see, e.g., [20, Lemma 2.8]).

The next result known as the Babus̆ka-Brezzi theorem is the version of Theorem 1 for Hilbert spaces (see [6], [10, Theorems 0.1, 1.1, Corollary 1.2]).

Theorem 4

Let X and \({\mathcal M}\) be two real Hilbert spaces. Let \(a(\cdot ,\cdot ):X\times X\to {\mathbb R}\) and \(b(\cdot ,\cdot ):X\times {\mathcal M}\to {\mathbb R}\) be bounded bilinear forms. Let f  X and \(g\in {\mathcal M}^{*}\) . Let V  be the subspace of X defined by (4). Assume that \(a(\cdot ,\cdot ):V\times V\to {\mathbb R}\) is coercive and that \(b(\cdot ,\cdot ):X\times {\mathcal M}\to {\mathbb R}\) satisfies the inf-sup condition (7). Then the variational problem (1) is well-posed.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kohr, M., Mikhailov, S.E., Wendland, W.L. (2019). Newtonian and Single Layer Potentials for the Stokes System with L Coefficients and the Exterior Dirichlet Problem. In: Rogosin, S., Çelebi, A. (eds) Analysis as a Life. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-02650-9_12

Download citation

Publish with us

Policies and ethics